11 research outputs found

    Ethical safety of deep brain stimulation: A study on moral decision-making in Parkinson's disease

    Get PDF
    INTRODUCTION: The possibility that deep brain stimulation (DBS) in Parkinson's disease (PD) alters patients' decisions and actions, even temporarily, raises important clinical, ethical and legal questions. Abnormal moral decision-making can lead to ethical rules violations. Previous experiments demonstrated the subthalamic (STN) activation during moral decision-making. Here we aim to study whether STN DBS can affect moral decision-making in PD patients. METHODS: Eleven patients with PD and bilateral STN DBS implant performed a computerized moral task in ON and OFF stimulation conditions. A control group of PD patients without DBS implant performed the same experimental protocol. All patients underwent motor, cognitive and psychological assessments. RESULTS: STN stimulation was not able to modify neither reaction times nor responses to moral task both when we compared the ON and the OFF state in the same patient (reaction times, p = .416) and when we compared DBS patients with those treated only with the best medical treatment (reaction times: p = .408, responses: p = .776). CONCLUSIONS: Moral judgment is the result of a complex process, requiring cognitive executive functions, problem-solving, anticipations of consequences of an action, conflict processing, emotional evaluation of context and of possible outcomes, and involving different brain areas and neural circuits. Our data show that STN DBS leaves unaffected moral decisions thus implying relevant clinical and ethical implications for DBS consequences on patients' behavior, on decision-making and on judgment ability. In conclusion, the technique can be considered safe on moral behavior

    Adaptive deep brain stimulation in a freely moving parkinsonian patient

    Get PDF
    The future of deep brain stimulation (DBS) for Parkinson\u2019s disease (PD) lies in new closed-loop systems that continuously supply the implanted stimulator with new settings obtained by analyzing a feedback signal related to the patient\u2019s current clinical condition

    Unilateral Application of Cathodal tDCS Reduces Transcallosal Inhibition and Improves Visual Acuity in Amblyopic Patients

    Get PDF
    Objective: Amblyopia is a neurodevelopmental disorder characterized by visual acuity and contrast sensitivity loss, refractory to pharmacological and optical treatments in adulthood. In animals, the corpus callosum (CC) contributes to suppression of visual responses of the amblyopic eye. To investigate the role of interhemispheric pathways in amblyopic patients, we studied the response of the visual cortex to transcranial Direct Current Stimulation (tDCS) applied over the primary visual area (V1) contralateral to the "lazy eye." Methods: Visual acuity (logMAR) was assessed before (T0), immediately after (T1) and 60' following the application of cathodal tDCS (2.0 mA, 20') in 12 amblyopic patients. At each time point, Visual Evoked Potentials (VEPs) triggered by grating stimuli of different contrasts (K90%, K20%) were recorded in both hemispheres and compared to those obtained in healthy volunteers. Results: Cathodal tDCS improved visual acuity respect to baseline (p < 0.0001), whereas sham polarization had no significant effect. At T1, tDCS induced an inhibitory effect on VEPs amplitudes at all contrasts in the targeted side and a facilitation of responses in the hemisphere ipsilateral to the amblyopic eye; compared with controls, the facilitation persisted at T2 for high contrasts (K90%; Holm-Sidak post hoc method, p < 0.001), while the stimulated hemisphere recovered more quickly from inhibition (Holm-Sidak post hoc method, p < 0.001). Conclusions: tDCS is a promising treatment for amblyopia in adults. The rapid recovery of excitability and the concurrent transcallosal disinhibition following perturbation of cortical activity may support a critical role of interhemispheric balance in the pathophysiology of amblyopia

    Adaptive deep brain stimulation controls levodopa-induced side effects in Parkinsonian patients

    Get PDF
    The potential superior benefits of adaptive deep brain stimulation (aDBS) approaches compared to classical, constantparameters DBS were already proven by scientific evidence from different research groups. aDBS provides better symptoms control in Parkinson\u2019s disease patients by adapting the stimulation parameters to the patient\u2019s clinical state estimated through the analysis of subthalamic neuronal oscillations (ie, local field potentials) in the beta band (13-30 Hz)

    Transcutaneous spinal cord direct current stimulation inhibits the lower limb nociceptive flexion reflex in human beings

    No full text
    Aiming at developing a new, noninvasive approach to spinal cord neuromodulation, we evaluated whether transcutaneous direct current (DC) stimulation induces long-lasting changes in the central pain pathways in human beings. A double-blind crossover design was used to investigate the effects of anodal direct current (2mA, 15min) applied on the skin overlying the thoracic spinal cord on the lower-limb flexion reflex in a group of 11 healthy volunteers. To investigate whether transcutaneous spinal cord DC stimulation (tsDCS) acts indirectly on the nociceptive reflex by modulating excitability in mono-oligosynaptic segmental reflex pathways, we also evaluated the H-reflex size from soleus muscle after tibial nerve stimulation. In our healthy subjects, anodal thoracic tsDCS reduced the total lower-limb flexion reflex area by 40.25% immediately after stimulation (T0) and by 46.9% 30min after stimulation offset (T30). When we analyzed the 2 lower-limb flexion reflex components (RII tactile and RIII nociceptive) separately, we found that anodal tsDCS induced a significant reduction in RIII area with a slight but not significant effect on RII area. After anodal tsDCS, the RIII area decreased by 27% at T0 and by 28% at T30. Both sham and active tsDCS left all the tested H-reflex variables unchanged. None of our subjects reported adverse effects after active stimulation. These results suggest that tsDCS holds promise as a tool that is complementary or alternative to drugs and invasive spinal cord electrical stimulation for managing pain. Thoracic transcutaneous direct current stimulation induces depression of nociceptive lower limb flexion reflex in human beings that persists after stimulation offset; this form of stimulation holds promise as a tool that is complementary or alternative to drugs and invasive spinal cord electrical stimulation for managing pain

    Abnormal sexuality in Parkinson's disease: fact or fancy?

    No full text
    Purpose Patients with Parkinson's disease (PD) variably report sexual dysfunctions. We assessed sexuality in PD by comparing sexual function between a large group of patients with idiopathic PD and a group of subjects without PD. Methods We recruited 121 patients with mild-to-moderate PD (aged 40ñ\u80\u9380 years) from four Italian Movement Disorder Clinics and 123 non-Parkinsonian controls (NPC) (aged 40ñ\u80\u9380 years). Sexual function was assessed with four scales: the Brief Index of Sexual Functioning (BISF-M for men; BISF-W for women), the International Index of Erectile Function (IIEF), and the Female Sexual Function Index (FSFI). Both groups also underwent assessment with the Beck Depression Inventory (BDI) and the Mini Mental State Examination (MMSE), and patients were assessed with the Parkinson's Disease Questionnaire-8 (PDQ-8). Results No differences in total score were found between PD and NPC for any sexual function scale (BISF-M, BISF-W, IIEF, FSFI: p > 0.05). However, the Orgasm/Pleasure Domain (BISF, D5) was significantly lower in male patients than in controls. Conclusion Our findings fail to confirm previous findings that PD is associated with a significant sexual impairment. NPC and patients with PD have comparable sexual function in both sexes. Thus, rather than dismissing sexual dysfunction as a normal parkinsonian symptom, physicians should refer patients to sexual medicine specialists who can investigate and discuss problems fully, diagnose possible comorbidities, and suggest appropriate treatments

    The Effects of Levodopa and Deep Brain Stimulation on Subthalamic Local Field Low-Frequency Oscillations in Parkinson's Disease

    No full text
    New adaptive systems for deep brain stimulation (DBS) could in the near future optimize stimulation settings online so as to achieve better control over the clinical fluctuations in Parkinson's disease (PD). Local field potentials (LFPs) recorded from the subthalamic nucleus (STN) in PD patients show that levodopa and DBS modulate STN oscillations. Because previous research has shown that levodopa and DBS variably influence beta LFP activity (8-20 Hz), we designed this study to find out how they affect low-frequency (LF) oscillations (2-7 Hz). STN LFPs were recorded in 19 patients with PD during DBS, after levodopa medication, and during DBS and levodopa intake combined. We investigated the relationship between LF modulations, DBS duration and levodopa intake. We also studied whether LF power depended on disease severity, the patient's clinical condition and whether LF modulations were related to electrode impedances. LF power increased during DBS, after levodopa intake and under both experimental conditions combined. The LF power increase correlated with the levodopa-induced clinical improvement and the higher the electrode impedance, the greater was the LF power change. These data suggest that the LF band could be useful as a control neurosignal for developing novel adaptive DBS systems for patients with PD
    corecore