4,559 research outputs found

    Multi-hp adaptive discontinuous Galerkin methods for simplified PN approximations of 3D radiative transfer in non-gray media

    Get PDF
    In this paper we present a multi-hp adaptive discontinuous Galerkin method for 3D simplified approximations of radiative transfer in non-gray media capable of reaching accuracies superior to most of methods in the literature. The simplified models are a set of differential equations derived based on asymptotic expansions for the integro-differential radiative transfer equation. In a non-gray media the optical spectrum is divided into a finite set of bands with constant absorption coefficients and the simplified approximations are solved for each band in the spectrum. At high temperature, boundary layers with different magnitudes occur for each wavelength in the spectrum and developing a numerical solver to accurately capture them is challenging for the conventional finite element methods. Here we propose a class of high-order adaptive discontinuous Galerkin methods using space error estimators. The proposed method is able to solve problems where 3D meshes contain finite elements of different kind with the number of equations and polynomial orders of approximation varying locally on the finite element edges, faces, and interiors. The proposed method has also the potential to perform both isotropic and anisotropic adaptation for each band in the optical spectrum. Several numerical results are presented to illustrate the performance of the proposed method for 3D radiative simulations. The computed results confirm its capability to solve 3D simplified approximations of radiative transfer in non-gray media

    Nuclear and Non-Ionizing Energy-Loss for Coulomb Scattered Particles from Low Energy up to Relativistic Regime in Space Radiation Environment

    Full text link
    In the space environment, instruments onboard of spacecrafts can be affected by displacement damage due to radiation. The differential scattering cross section for screened nucleus--nucleus interactions - i.e., including the effects due to screened Coulomb nuclear fields -, nuclear stopping powers and non-ionization energy losses are treated from about 50 keV/nucleon up to relativistic energies.Comment: Accepted for publication in the Proceedings of the ICATPP Conference on Cosmic Rays for Particle and Astroparticle Physics, Villa Olmo (Como, Italy), 7--8 October, 2010, to be published by World Scientifi

    GEANT steps into the future

    Get PDF

    Can Einstein (rings) surf Gravitational Waves?

    Full text link
    How does the appearance of a strongly lensed system change if a gravitational wave is produced by the lens? In this work we address this question by considering a supermassive black hole binary at the center of the lens emitting gravitational waves propagating either colinearly or orthogonally to the line of sight. Specializing to an Einstein ring configuration (where the source, the lens and the observer are aligned), we show that the gravitational wave induces changes on the ring's angular size and on the optical path of photons. The changes are the same for a given pair of antipodal points on the ring, but maximally different for any pair separated by 90∘90^{\circ}. For realistic lenses and binaries, we find that the change in the angular size of the Einstein ring is dozens of orders of magnitude smaller than the precision of current experiments. On the other hand, the difference in the optical path induced on a photon by a gravitational wave propagating \textit{orthogonally} to the line of sight triggers, at peak strain, time delays in the range ∌0.01−1\sim 0.01 - 1 seconds, making the chance of their detection (and thus the use of Einstein rings as gravitational wave detectors) less hopeless.Comment: v2. Version accepted for publication in the Open Journal of Astrophysics. 8 pages, four figures. Comments are welcome

    Dualisation of the D=7 Heterotic String

    Full text link
    The dualisation and the first-order formulation of the D=7 abelian Yang-Mills supergravity which is the low energy effective limit of the D=7 fully Higssed heterotic string is discussed. The non-linear coset formulation of the scalars is enlarged to include the entire bosonic sector by introducing dual fields and by constructing the Lie superalgebra which generates the dualized coset element.Comment: 20 page

    GEANT4 simulation of phase rotation for neutrino factory

    Get PDF
    We discuss a GEANT4 simulation of the phase rotation system for a neutrino factory. The comparison with the beam transport code PATH shows a good agreement. Preliminary results for the energy disposition in the cryostat of the superconducting 1.8 T solenoid are briefly presented

    Proctology in the COVID-19 era: handle with care

    Get PDF
    The Italian outbreak of COVID-19 was confirmed on 31 January 2020 when two COVID-19-positive cases were reported in Chinese tourists. At the beginning, the vast majority of cases were reported in the northern regions of Italy with establishment of the so-called ‘red zone’. On 9March 2020, the Italian prime minister declared a nationwide lockdown to strengthen the national health system (Sistema Sanitario Nazionale). Italy has one of the highest rates of infection and mortality in the worl

    Clinical and Pathophysiological Insights Into Immunological Mediated Glomerular Diseases in Childhood

    Get PDF
    The kidney is often the target of immune system dysregulation in the context of primary or systemic disease. In particular, the glomerulus represents the anatomical entity most frequently involved, generally as the expression of inflammatory cell invasion or circulant or in situ immune-complex deposition. Glomerulonephritis is the most common clinical and pathological manifestation of this involvement. There are no universally accepted classifications for glomerulonephritis. However, recent advances in our understanding of the pathophysiological mechanisms suggest the assessment of immunological features, biomarkers, and genetic analysis. At the same time, more accurate and targeted therapies have been developed. Data on pediatric glomerulonephritis are scarce and often derived from adult studies. In this review, we update the current understanding of the etiologic events and genetic factors involved in the pathogenesis of pediatric immunologically mediated primitive forms of glomerulonephritis, together with the clinical spectrum and prognosis. Possible new therapeutic targets are also briefly discussed
    • 

    corecore