36 research outputs found

    Surface Texturing of n- and p-Doped c-Si Using a Novel Plasma Chemical Texturing Process

    Get PDF
    Abstract n- and p-doped c-Si (100) are textured by a SF 6 /O 2 plasma chemical etching, under conditions avoiding ion bombardment. The study of the effects of plasma parameters on morphology and on surface reflectance of textured c-Si reveals a strong impact of silicon doping on texturing characteristics. SF 6 /O 2 plasma etches anisotropically n-type c-Si creating a square-based hillock-like morphology with a surface reflectivity of 6%. Conversely, for p-type Si, a H 2 plasma pretreatment is necessary to activate silicon etching and obtain a nano-textured surface with a reflectivity of 16%

    Gallium plasmonic nanoantennas unveiling multiple kinetics of hydrogen sensing, storage, and spillover

    Get PDF
    Hydrogen is the key element to accomplish a carbon-free based economy. Here, the first evidence of plasmonic gallium (Ga) nanoantennas is provided as nanoreactors supported on sapphire (α-Al2O3) acting as direct plasmon-enhanced photocatalyst for hydrogen sensing, storage, and spillover. The role of plasmon-catalyzed electron transfer between hydrogen and plasmonic Ga nanoparticle in the activation of those processes is highlighted, as opposed to conventional refractive index-change-based sensing. This study reveals that, while temperature selectively operates those various processes, longitudinal (LO-LSPR) and transverse (TO-LSPR) localized surface plasmon resonances of supported Ga nanoparticles open selectivity of localized reaction pathways at specific sites corresponding to the electromagnetic hot-spots. Specifically, the TO-LSPR couples light into the surface dissociative adsorption of hydrogen and formation of hydrides, whereas the LO-LSPR activates heterogeneous reactions at the interface with the support, that is, hydrogen spillover into α-Al2O3 and reverse-oxygen spillover from α-Al2O3. This Ga-based plasmon-catalytic platform expands the application of supported plasmon-catalysis to hydrogen technologies, including reversible fast hydrogen sensing in a timescale of a few seconds with a limit of detection as low as 5 ppm and in a broad temperature range from room-temperature up to 600 °C while remaining stable and reusable over an extended period of time.The authors thank all of the students and colleagues in their groups who were actively involved with nanoparticles research. M.L., Y.G., and F.M. have received funding from the European Union's Horizon 2020 Research and Innovation Program under Grant Agreement No. 899598—PHEMTRONICS. F.M. acknowledges MINECO (Spanish Ministry of Economy and Competitiveness, project PGC2018-096649-B-100)

    Layered gallium sulfide optical properties from monolayer to CVD crystalline thin films

    Get PDF
    Interest in layered van der Waals semiconductor gallium monosulfide (GaS) is growing rapidly because of its wide band gap value between those of two-dimensional transition metal dichalcogenides and of insulating layered materials such as hexagonal boron nitride. For the design of envisaged optoelectronic, photocatalytic and photonic applications of GaS, the knowledge of its dielectric function is fundamental. Here we present a combined theoretical and experimental investigation of the dielectric function of crystalline 2H-GaS from monolayer to bulk. Spectroscopic imaging ellipsometry with micron resolution measurements are corroborated by first principle calculations of the electronic structure and dielectric function. We further demonstrate and validate the applicability of the established dielectric function to the analysis of the optical response of c-axis oriented GaS layers grown by chemical vapor deposition (CVD). These optical results can guide the design of novel, to our knowledge, optoelectronic and photonic devices based on low-dimensional GaS.Horizon 2020 Framework Programme (No 899598 – PHEMTRONICS)

    Interlaboratory study on Sb2S3 interplay between structure, dielectric function, and morphous-to-crystalline phase change for photonics

    Get PDF
    Antimony sulfide, Sb2S3, is interesting as the phase-change material for applications requiring high transmission from the visible to telecom wavelengths, with its band gap tunable from 2.2 to 1.6 eV, depending on the amorphous and crystalline phase. Here we present results from an interlaboratory study on the interplay between the structural change and resulting optical contrast during the amorphous-to-crystalline transformation triggered both thermally and optically. By statistical analysis of Raman and ellipsometric spectroscopic data, we have identified two regimes of crystallization, namely 250_C % T < 300_C, resulting in Type-I spherulitic crystallization yielding an optical contrast Dn _ 0.4, and 300 % T < 350 _ C, yielding Type-II crystallization bended spherulitic structure with different dielectric function and optical contrast Dn _ 0.2 below 1.5 eV. Based on our findings, applications of on-chip reconfigurable nanophotonic phase modulators and of a reconfigurable high-refractive-index core/phase-change shell nanoantenna are designed and proposed.The authors acknowledge the support from the European Union’s Horizon 2020 research and innovation program (No 899598 - PHEMTRONICS)

    Association between bone mineral density and type 2 diabetes mellitus: a meta-analysis of observational studies

    Get PDF
    Type 2 diabetes mellitus (T2DM) influences bone metabolism, but the relation of T2DM with bone mineral density (BMD) remains inconsistent across studies. The objective of this study was to perform a meta-analysis and meta-regression of the literature to estimate the difference in BMD (g/cm2) between diabetic and non-diabetic populations, and to investigate potential underlying mechanisms. A literature search was performed in PubMed and Ovid extracting data from articles prior to May 2010. Eligible studies were those where the association between T2DM and BMD measured by dual energy X-ray absorptiometry was evaluated using a cross-sectional, cohort or case–control design, including both healthy controls and subjects with T2DM. The analysis was done on 15 observational studies (3,437 diabetics and 19,139 controls). Meta-analysis showed that BMD in diabetics was significantly higher, with pooled mean differences of 0.04 (95% CI: 0.02, 0.05) at the femoral neck, 0.06 (95% CI: 0.04, 0.08) at the hip and 0.06 (95% CI: 0.04, 0.07) at the spine. The differences for forearm BMD were not significantly different between diabetics and non-diabetics. Sex-stratified analyses showed similar results in both genders. Substantial heterogeneity was found to originate from differences in study design and possibly diabetes definition. Also, by applying meta-regression we could establish that younger age, male gender, higher body mass index and higher HbA1C were positively associated with higher BMD levels in diabetic individuals. We conclude that individuals with T2DM from both genders have higher BMD levels, but that multiple factors influence BMD in individuals with T2DM

    Increased Risk of Fragility Fractures among HIV Infected Compared to Uninfected Male Veterans

    Get PDF
    BACKGROUND: HIV infection has been associated with an increased risk of fragility fracture. We explored whether or not this increased risk persisted in HIV infected and uninfected men when controlling for traditional fragility fracture risk factors. METHODOLOGY/PRINCIPAL FINDINGS: Cox regression models were used to assess the association of HIV infection with the risk for incident hip, vertebral, or upper arm fracture in male Veterans enrolled in the Veterans Aging Cohort Study Virtual Cohort (VACS-VC). We calculated adjusted hazard ratios comparing HIV status and controlling for demographics and other established risk factors. The sample consisted of 119,318 men, 33% of whom were HIV infected (34% aged 50 years or older at baseline, and 55% black or Hispanic). Median body mass index (BMI) was lower in HIV infected compared with uninfected men (25 vs. 28 kg/m²; p<0.0001). Unadjusted risk for fracture was higher among HIV infected compared with uninfected men [HR: 1.32 (95% CI: 1.20, 1.47)]. After adjusting for demographics, comorbid disease, smoking and alcohol abuse, HIV infection remained associated with an increased fracture risk [HR: 1.24 (95% CI: 1.11, 1.39)]. However, adjusting for BMI attenuated this association [HR: 1.10 (95% CI: 0.97, 1.25)]. The only HIV-specific factor associated with fragility fracture was current protease inhibitor use [HR: 1.41 (95% CI: 1.16, 1.70)]. CONCLUSIONS/SIGNIFICANCE: HIV infection is associated with fragility fracture risk. This risk is attenuated by BMI

    Spectroscopic ellipsometry and polarimetry for materials and systems analysis at the nanometer scale: state-of-the-art, potential, and perspectives

    Get PDF
    This paper discusses the fundamentals, applications, potential, limitations, and future perspectives of polarized light reflection techniques for the characterization of materials and related systems and devices at the nanoscale. These techniques include spectroscopic ellipsometry, polarimetry, and reflectance anisotropy. We give an overview of the various ellipsometry strategies for the measurement and analysis of nanometric films, metal nanoparticles and nanowires, semiconductor nanocrystals, and submicron periodic structures. We show that ellipsometry is capable of more than the determination of thickness and optical properties, and it can be exploited to gain information about process control, geometry factors, anisotropy, defects, and quantum confinement effects of nanostructures

    Interplay between Thickness, Defects, Optical Properties, and Photoconductivity at the Centimeter Scale in Layered GaS

    No full text
    From the group-III monochalcogenide (MX, M&thinsp; = &thinsp;Ga, In; X&thinsp; = &thinsp;S, Se, Te) layered semiconductors, gallium monosulfide, GaS, has emerged as a promising material for electronics, optoelectronics, and catalysis applications. In this work, GaS samples of various thicknesses in the range from 38 to 1665 nm have been obtained by mechanical exfoliation to study the interplay between structural, morphological, optical, and photoresponsivity properties as a function of thickness. This interplay has been established by analyzing the structure through Raman spectroscopy and X-ray diffraction, the morphology through scanning electron microscopy and atomic force microscopy, the density and optical properties through spectroscopic ellipsometry, and the photoresponsivity through current&ndash;voltage measurements under UV light. This work shows that photoresponsivity increases with increases in GaS thickness, resulting in a UV photoresponsivity of 1.5&middot;10&minus;4 AW&minus;1 stable over several on/off cycles
    corecore