63 research outputs found

    Novel Unsymmetrical Ru(III) and Mixed-valence Ru(III)/Ru(II) Dinuclear Compounds Related to the Antimetastatic Ru(III) Drug NAMI-A

    Get PDF
    In this paper we report the stepwise preparation and the characterization of new unsymmetrical monoanionic Ru(III) dinuclear compounds, [NH4][{trans-RuCl4(Me2SO-S)}(μ-L){mer-RuCl3(Me2SO-S)(Me2SO-O)}] (L = pyz (1), pym (2)). By a similar synthetic approach we also prepared new mixed-valence Ru(III)/Ru(II) dinuclear compounds of formula [NH4][{trans-RuCl4(Me2SO-S)}(μ-pyz){cis,cis,cis-RuCl2(Me2SO-S)2(CO)}] (L = pyrazine (pyz, 3), pyrimidine (pym, 4)). Moreover, we describe the chemical behavior of compounds 1-4 in physiological solution, also after complete reduction (with ascorbic acid) to the corresponding Ru(II)/Ru(II) species. Overall, the chemical behavior of 1 and 2 after reduction resembles that of the corresponding dianionic and neutral dinuclear species, [{trans-RuCl3(Me2SO-S)}2(μ-L)]2−and [{mer-RuCl3(Me2SO-S)(Me2SO-O)}2 (μ-L)]. On the other hand, the mixed-valence dinuclear compounds 3 and 4, owing to the great inertness of the cis,cis,cis-RuCl2(Me2SO-S)2(CO)(1/2μ-L) fragment, behave substantially like the mononuclear species [trans-RuCl4(Me2SO-S)(L)]− in which the terminally bonded L ligand can be considered as bearing a bulky substituent on the other N atom

    Somatostatin subtype-2 receptor-targeted metal-based anticancer complexes

    Get PDF
    Conjugates of a dicarba analogue of octreotide, a potent somatostatin agonist whose receptors are overexpressed on tumor cells, with [PtCl 2(dap)] (dap = 1-(carboxylic acid)-1,2-diaminoethane) (3), [(η 6-bip)Os(4-CO 2-pico)Cl] (bip = biphenyl, pico = picolinate) (4), [(η 6-p-cym)RuCl(dap)] + (p-cym = p-cymene) (5), and [(η 6-p-cym)RuCl(imidazole-CO 2H)(PPh 3)] + (6), were synthesized by using a solid-phase approach. Conjugates 3-5 readily underwent hydrolysis and DNA binding, whereas conjugate 6 was inert to ligand substitution. NMR spectroscopy and molecular dynamics calculations showed that conjugate formation does not perturb the overall peptide structure. Only 6 exhibited antiproliferative activity in human tumor cells (IC 50 = 63 ± 2 μ in MCF-7 cells and IC 50 = 26 ± 3 μ in DU-145 cells) with active participation of somatostatin receptors in cellular uptake. Similar cytotoxic activity was found in a normal cell line (IC 50 = 45 ± 2.6 μ in CHO cells), which can be attributed to a similar level of expression of somatostatin subtype-2 receptor. These studies provide new insights into the effect of receptor-binding peptide conjugation on the activity of metal-based anticancer drugs, and demonstrate the potential of such hybrid compounds to target tumor cells specifically. © 2012 American Chemical Society

    Iron-Catalyzed Oxidation of 1-Phenylethanol and Glycerol With Hydrogen Peroxide in Water Medium: Effect of the Nitrogen Ligand on Catalytic Activity and Selectivity

    Get PDF
    The iron(II) complexes [Fe(bpy)3](OTf)2 (bpy = 2,2'-bipyridine; OTf = CF3SO3) (1) and [Fe(bpydeg)3](OTf)2 (bpydeg = N4,N4-bis(2-(2-methoxyethoxy)ethyl) [2,2'-bipyridine]-4,4'-dicarboxamide) (2), the latter being a newly synthesized ligand, were employed as catalyst precursors for the oxidation of 1-phenylethanol with hydrogen peroxide in water, using either microwave or conventional heating. With the same oxidant and medium the oxidation of glycerol was also explored in the presence of 1 and 2, as well as of two similar iron(II) complexes bearing tridentate ligands, i.e., [Fe(terpy)2](OTf)2 (terpy = 2, 6-di(2-pyridyl)pyridine) (3) and [Fe(bpa)2](OTf)2 (bpa = bis(2-pyridinylmethyl)amine) (4): in most reactions the major product formed was formic acid, although with careful tuning of the experimental conditions significant amounts of dihydroxyacetone were obtained. Addition of heterocyclic amino acids (e.g., picolinic acid) increased the reaction yields of most catalytic reactions. The effect of such additives on the evolution of the catalyst precursors was studied by spectroscopic (NMR, UV-visible) and ESI-MS techniques

    A categorization of metal anticancer compounds based on their mode of action.

    No full text
    The development of new metal anticancer compounds is a challenge for inorganic chemists. Four decades of research in this field have only produced a small number of clinically used compounds, most often developed through serendipity rather than through rational chemical design. Nevertheless, medicinal inorganic chemistry is probably mature for making significant steps forward. We suggest here a categorization of metal anticancer compounds into five classes based on their mode of action: (i) the metal has a functional role, i.e. it must bind to the biological target; (ii) the metal has a structural role, i.e. it is instrumental in determining the shape of the compound and binding to the biological target occurs through non-covalent interactions; (iii) the metal is a carrier for active ligands that are delivered in vivo; (iv) the metal compound is a catalyst; and (v) the metal compound is photoactive and behaves as a photo-sensitizer. Selected examples for each category are given
    corecore