168 research outputs found

    ProCAVIAR: Hybrid Data-Driven and Probabilistic Knowledge-Based Activity Recognition

    Get PDF
    The recognition of physical activities using sensors on mobile devices has been mainly addressed with supervised and semi-supervised learning. The state-of-the-art methods are mainly based on the analysis of the user\u2019s movement patterns that emerge from inertial sensors data. While the literature on this topic is quite mature, existing approaches are still not adequate to discriminate activities characterized by similar physical movements. The context that surrounds the user (e.g., semantic location) could be used as additional information to significantly extend the set of recognizable activities. Since collecting a comprehensive training set with activities performed in every possible context condition is too costly, if possible at all, existing works proposed knowledge-based reasoning over ontological representation of context data to refine the predictions obtained from machine learning. A problem with this approach is the rigidity of the underlying logic formalism that cannot capture the intrinsic uncertainty of the relationships between activities and context. In this work, we propose a novel activity recognition method that combines semisupervised learning and probabilistic ontological reasoning. We model the relationships between activities and context as a combination of soft and hard ontological axioms. For each activity, we use a probabilistic ontology to compute its compatibility with the current context conditions. The output of probabilistic semantic reasoning is combined with the output of a machine learning classifier based on inertial sensor data to obtain the most likely activity performed by the user. The evaluation of our system on a dataset with 13 types of activities performed by 26 subjects shows that our probabilistic framework outperforms both a pure machine learning approach and previous hybrid approaches based on classic ontological reasoning

    Hierarchical Self-Assembly of Halogen-Bonded Block Copolymer Complexes into Upright Cylindrical Domains

    Get PDF
    Self-assembly of block copolymers into well-defined, ordered arrangements of chemically distinct domains is a reliable strategy for preparing tailored nanostructures. Microphase separation results from the system, minimizing repulsive interactions between dissimilar blocks and maximizing attractive interactions between similar blocks. Supramolecular methods have also achieved this separation by introducing small-molecule additives binding specifically to one block by noncovalent interactions. Here, we use halogen bonding as a supramolecular tool that directs the hierarchical self-assembly of low-molecular-weight perfluorinated molecules and diblock copolymers. Microphase separation results in a lamellar-within-cylindrical arrangement and promotes upright cylindrical alignment in films upon rapid casting and without further annealing. Such cylindrical domains with internal lamellar self-assemblies can be cleaved by solvent treatment of bulk films, resulting in separated and segmented cylindrical micelles stabilized by halogen-bond-based supramolecular crosslinks. These features, alongside the reversible nature of halogen bonding, provide a robust modular approach for nanofabricatio

    Proline enantiomers discrimination by (L)-prolinated porphyrin derivative Langmuir-Schaefer films: proof of concept for chiral sensing applications

    Get PDF
    A porphyrin derivative functionalized with the L-enantiomer of proline amino acid was characterized at the air-pure water interface of the Langmuir trough. The porphyrin derivative was dissolved in dichloromethane solution, spread at the air-subphase interface and investigated by acquiring the surface pressure vs. area per molecule Langmuir curves. It is worth observing that the behavior of the molecules of the porphyrin derivative floating film was substantially influenced by the presence of L-proline amino acid dissolved in the subphase (10(-5) M); on the contrary, the physical chemical features of the floating molecules were only slightly influenced by the D-proline dissolved in the subphase. Such an interesting chirality-driven selection was preserved when the floating film was transferred onto solid supports by means of the Langmuir-Schaefer method, but it did not emerge when a spin-coating technique was used for the layering of the tetrapyrrolic derivatives. The obtained results represent proof of concept for the realization of active molecular layers for chiral discrimination: porphyrin derivatives, due to their intriguing spectroscopic and supramolecular properties, can be functionalized with the chiral molecule that should be detected. Moreover, the results emphasize the crucial role of the deposition technique on the features of the sensing layers

    A Stimuli-Responsive Nanocomposite for 3D Anisotropic Cell-Guidance and Magnetic Soft Robotics

    Get PDF
    Stimuli-responsive materials have the potential to enable the generation of new bioinspired devices with unique physicochemical properties and cell-instructive ability. Enhancing biocompatibility while simplifying the production methodologies, as well as enabling the creation of complex constructs, i.e., via 3D (bio)printing technologies, remains key challenge in the field. Here, a novel method is presented to biofabricate cellularized anisotropic hybrid hydrogel through a mild and biocompatible process driven by multiple external stimuli: magnetic field, temperature, and light. A low-intensity magnetic field is used to align mosaic iron oxide nanoparticles (IOPs) into filaments with tunable size within a gelatin methacryloyl matrix. Cells seeded on top or embedded within the hydrogel align to the same axes of the IOPs filaments. Furthermore, in 3D, C2C12 skeletal myoblasts differentiate toward myotubes even in the absence of differentiation media. 3D printing of the nanocomposite hydrogel is achieved and creation of complex heterogeneous structures that respond to magnetic field is demonstrated. By combining the advanced, stimuli-responsive hydrogel with the architectural control provided by bioprinting technologies, 3D constructs can also be created that, although inspired by nature, express functionalities beyond those of native tissue, which have important application in soft robotics, bioactuators, and bionic devices

    Proline Enantiomers Discrimination by (L)-Prolinated Porphyrin Derivative Langmuir–Schaefer Films: Proof of Concept for Chiral Sensing Applications

    Get PDF
    A porphyrin derivative functionalized with the L-enantiomer of proline amino acid was characterized at the air–pure water interface of the Langmuir trough. The porphyrin derivative was dissolved in dichloromethane solution, spread at the air–subphase interface and investigated by acquiring the surface pressure vs. area per molecule Langmuir curves. It is worth observing that the behavior of the molecules of the porphyrin derivative floating film was substantially influenced by the presence of L-proline amino acid dissolved in the subphase (10−5 M); on the contrary, the physical chemical features of the floating molecules were only slightly influenced by the D-proline dissolved in the subphase. Such an interesting chirality-driven selection was preserved when the floating film was transferred onto solid supports by means of the Langmuir–Schaefer method, but it did not emerge when a spin-coating technique was used for the layering of the tetrapyrrolic derivatives. The obtained results represent proof of concept for the realization of active molecular layers for chiral discrimination: porphyrin derivatives, due to their intriguing spectroscopic and supramolecular properties, can be functionalized with the chiral molecule that should be detected. Moreover, the results emphasize the crucial role of the deposition technique on the features of the sensing layers

    Robotic Versus Open Kidney Transplantation from Deceased Donors : A Prospective Observational Study

    Get PDF
    Background: While robot-assisted kidney transplantation (RAKT) from living donors has been shown to achieve favourable outcomes, there is a lack of evidence on the safety and efficacy of RAKT as compared with the gold standard open kidney transplantation (OKT) in the setting of deceased donors, who represent the source of most grafts worldwide. Objective: To compare the intraoperative, perioperative, and midterm outcomes of RAKT versus OKT from donors after brain death (DBDs). Design, setting, and participants: Data from consecutive patients undergoing RAKT or OKT from DBDs at a single academic centre between October 2017 and December 2020 were prospectively collected. Intervention: RAKT or OKT. Outcome measurements and statistical analysis: The primary outcomes were intraoperative adverse events, postoperative surgical complications, delayed graft function (DGF), and midterm functional outcomes. A multivariable logistic regression analysis assessed the independent predictors of DGF, trifecta, and suboptimal graft function (estimated glomerular filtration rate [eGFR] <45 ml/min/1.73 m) at the last follow-up. Results and limitations: Overall, 138 patients were included (117 [84.7%] OKTs and 21 [15.3%] RAKTs). The yearly proportion of RAKT ranged between 10% and 18% during the study period. The OKT and RAKT cohorts were comparable regarding all graft-related characteristics, while they differed regarding a few donor- and recipient-related factors. The median second warm ischaemic time, ureterovesical anastomosis time, postoperative complication rate, and eGFR trajectories did not differ significantly between the groups. A higher proportion of patients undergoing OKT experienced DGF; yet, at a median follow-up of 31 mo (interquartile range 19-44), there was no difference between the groups regarding the dialysis-free and overall survival. At the multivariable analysis, donor- and/or recipient-related factors, but not the surgical approach, were independent predictors of DGF, trifecta, and suboptimal graft function at the last follow-up. The study is limited by its nonrandomised nature and the small sample size. Conclusions: Our study provides preliminary evidence supporting the noninferiority of RAKT from DBDs as compared with the gold standard OKT in carefully selected recipients. Patient summary: Kidney transplantation using kidneys from deceased donors is still being performed with an open surgical approach in most transplant centres worldwide. In fact, no study has compared the outcomes of open and minimally invasive (robotic) kidney transplantation from deceased donors. In this study, we evaluated whether robotic kidney transplantation using grafts from deceased donors was not inferior to open kidney transplantation regarding the intraoperative, postoperative, and midterm functional outcomes. We found that, in experienced hands and provided that there was a time-efficient organisation of the transplantation pathway, robotic kidney transplantation from deceased donors was feasible and achieved noninferior outcomes as compared with open kidney transplantation

    Supramolecular amplification of amyloid self-assembly by iodination

    Get PDF
    Amyloid supramolecular assemblies have found widespread exploitation as ordered nanomaterials in a range of applications from materials science to biotechnology. New strategies are, however, required for understanding and promoting mature fibril formation from simple monomer motifs through easy and scalable processes. Noncovalent interactions are key to forming and holding the amyloid structure together. On the other hand, the halogen bond has never been used purposefully to achieve control over amyloid self-assembly. Here we show that single atom replacement of hydrogen with iodine, a halogen-bond donor, in the human calcitonin-derived amyloidogenic fragment DFNKF results in a super-gelator peptide, which forms a strong and shape-persistent hydrogel at 30-fold lower concentration than the wild-type pentapeptide. This is remarkable for such a modest perturbation in structure. Iodination of aromatic amino acids may thus develop as a general strategy for the design of new hydrogels from unprotected peptides and without using organic solvents
    • …
    corecore