49 research outputs found

    Lysyl oxidase activates the transcription activity of human collagene III promoter. Possible involvement of Ku antigen.

    Get PDF
    Lysyl oxidase is an extracellular enzyme controlling the maturation of the collagen. Because the similar behavior of lysyl oxidase and collagen III expressions in fibrotic tissues, we investigated the influence of lysyl oxidase over-expression on the promoter activity of COL3A1 gene. Our results showed that when COS-7 cells over-expressed the mature form of lysyl oxidase, COL3A1 promoter activity was significantly increased. Electrophoretic Mobility Shift Assay showed a binding activity in the region from –100 to -76, that was significantly increased by lysyl oxidase over-expression. We identified the binding activity as Ku antigen. The study suggests a new co-ordinated mechanisms that might be critical for the development of fibrosis

    The IgA nephropathy Biobank. An important starting point for the genetic dissection of a complex trait

    Get PDF
    BACKGROUND: IgA nephropathy (IgAN) or Berger's disease, is the most common glomerulonephritis in the world diagnosed in renal biopsied patients. The involvement of genetic factors in the pathogenesis of the IgAN is evidenced by ethnic and geographic variations in prevalence, familial clustering in isolated populations, familial aggregation and by the identification of a genetic linkage to locus IGAN1 mapped on 6q22–23. This study seems to imply a single major locus, but the hypothesis of multiple interacting loci or genetic heterogeneity cannot be ruled out. The organization of a multi-centre Biobank for the collection of biological samples and clinical data from IgAN patients and relatives is an important starting point for the identification of the disease susceptibility genes. DESCRIPTION: The IgAN Consortium organized a Biobank, recruiting IgAN patients and relatives following a common protocol. A website was constructed to allow scientific information to be shared between partners and to divulge obtained data (URL: ). The electronic database, the core of the website includes data concerning the subjects enrolled. A search page gives open access to the database and allows groups of patients to be selected according to their clinical characteristics. DNA samples of IgAN patients and relatives belonging to 72 multiplex extended pedigrees were collected. Moreover, 159 trios (sons/daughters affected and healthy parents), 1068 patients with biopsy-proven IgAN and 1040 healthy subjects were included in the IgAN Consortium Biobank. Some valuable and statistically productive genetic studies have been launched within the 5(th )Framework Programme 1998–2002 of the European project No. QLG1-2000-00464 and preliminary data have been published in "Technology Marketplace" website: . CONCLUSION: The first world IgAN Biobank with a readily accessible database has been constituted. The knowledge gained from the study of Mendelian diseases has shown that the genetic dissection of a complex trait is more powerful when combined linkage-based, association-based, and sequence-based approaches are performed. This Biobank continuously expanded contains a sample size of adequately matched IgAN patients and healthy subjects, extended multiplex pedigrees, parent-child trios, thus permitting the combined genetic approaches with collaborative studies

    Wolfram Syndrome: New Mutations, Different Phenotype

    Get PDF
    BACKGROUND: Wolfram Syndrome (WS) is an autosomal recessive neurodegenerative disorder characterized by Diabetes Insipidus, Diabetes Mellitus, Optic Atrophy, and Deafness identified by the acronym "DIDMOAD". The WS gene, WFS1, encodes a transmembrane protein called Wolframin, which recent evidence suggests may serve as a novel endoplasmic reticulum calcium channel in pancreatic β-cells and neurons. WS is a rare disease, with an estimated prevalence of 1/550.000 children, with a carrier frequency of 1/354. The aim of our study was to determine the genotype of WS patients in order to establish a genotype/phenotype correlation. METHODOLOGY/PRINCIPAL FINDINGS: We clinically evaluated 9 young patients from 9 unrelated families (6 males, 3 females). Basic criteria for WS clinical diagnosis were coexistence of insulin-treated diabetes mellitus and optic atrophy occurring before 15 years of age. Genetic analysis for WFS1 was performed by direct sequencing. Molecular sequencing revealed 5 heterozygous compound and 3 homozygous mutations. All of them were located in exon 8, except one in exon 4. In one proband only an heterozygous mutation (A684V) was found. Two new variants c.2663 C>A and c.1381 A>C were detected. CONCLUSIONS/SIGNIFICANCE: Our study increases the spectrum of WFS1 mutations with two novel variants. The male patient carrying the compound mutation [c.1060_1062delTTC]+[c.2663 C>A] showed the most severe phenotype: diabetes mellitus, optic atrophy (visual acuity 5/10), deafness with deep auditory bilaterally 8000 Hz, diabetes insipidus associated to reduced volume of posterior pituitary and pons. He died in bed at the age of 13 years. The other patient carrying the compound mutation [c.409_424dup16]+[c.1381 A>C] showed a less severe phenotype (DM, OA)

    Genetic approaches to human renal agenesis/hypoplasia and dysplasia

    Get PDF
    Congenital abnormalities of the kidney and urinary tract are frequently observed in children and represent a significant cause of morbidity and mortality. These conditions are phenotypically variable, often affecting several segments of the urinary tract simultaneously, making clinical classification and diagnosis difficult. Renal agenesis/hypoplasia and dysplasia account for a significant portion of these anomalies, and a genetic contribution to its cause is being increasingly recognized. Nevertheless, overlap between diseases and challenges in clinical diagnosis complicate studies attempting to discover new genes underlying this anomaly. Most of the insights in kidney development derive from studies in mouse models or from rare, syndromic forms of human developmental disorders of the kidney and urinary tract. The genes implicated have been shown to regulate the reciprocal induction between the ureteric bud and the metanephric mesenchyme. Strategies to find genes causing renal agenesis/hypoplasia and dysplasia vary depending on the characteristics of the study population available. The approaches range from candidate gene association or resequencing studies to traditional linkage studies, using outbred pedigrees or genetic isolates, to search for structural variation in the genome. Each of these strategies has advantages and pitfalls and some have led to significant discoveries in human disease. However, renal agenesis/hypoplasia and dysplasia still represents a challenge, both for the clinicians who attempt a precise diagnosis and for the geneticist who tries to unravel the genetic basis, and a better classification requires molecular definition to be retrospectively improved. The goal appears to be feasible with the large multicentric collaborative groups that share the same objectives and resources

    Genetic Drivers of Kidney Defects in the DiGeorge Syndrome

    Get PDF
    Background The DiGeorge syndrome, the most common of the microdeletion syndromes, affects multiple organs, including the heart, the nervous system, and the kidney. It is caused by deletions on chromosome 22q11.2; the genetic driver of the kidney defects is unknown. Methods We conducted a genomewide search for structural variants in two cohorts: 2080 patients with congenital kidney and urinary tract anomalies and 22,094 controls. We performed exome and targeted resequencing in samples obtained from 586 additional patients with congenital kidney anomalies. We also carried out functional studies using zebrafish and mice. Results We identified heterozygous deletions of 22q11.2 in 1.1% of the patients with congenital kidney anomalies and in 0.01% of population controls (odds ratio, 81.5; P=4.5Ă—10(-14)). We localized the main drivers of renal disease in the DiGeorge syndrome to a 370-kb region containing nine genes. In zebrafish embryos, an induced loss of function in snap29, aifm3, and crkl resulted in renal defects; the loss of crkl alone was sufficient to induce defects. Five of 586 patients with congenital urinary anomalies had newly identified, heterozygous protein-altering variants, including a premature termination codon, in CRKL. The inactivation of Crkl in the mouse model induced developmental defects similar to those observed in patients with congenital urinary anomalies. Conclusions We identified a recurrent 370-kb deletion at the 22q11.2 locus as a driver of kidney defects in the DiGeorge syndrome and in sporadic congenital kidney and urinary tract anomalies. Of the nine genes at this locus, SNAP29, AIFM3, and CRKL appear to be critical to the phenotype, with haploinsufficiency of CRKL emerging as the main genetic driver. (Funded by the National Institutes of Health and others.)

    Rituximab is a safe and effective long-term treatment for children with steroid and calcineurin inhibitor–dependent idiopathic nephrotic syndrome

    No full text
    In children with idiopathic nephrotic syndrome rituximab can maintain short-term remission with withdrawal of prednisone and calcineurin-inhibitors. Long-term effects including number of repeated infusions to maintain remission are unknown. We treated with rituximab 46 consecutive children with idiopathic nephrotic syndrome lasting for at least one year (6.3±4.1 years), who were maintained in remission with oral prednisone and calcineurin inhibitors. They received 1–5 rituximab courses during a median follow-up of three years (range 1–5). Oral agents were tapered after each infusion, and completely withdrawn within 45 days. Rituximab was well tolerated. Six-month probabilities of remission were 48% after the first infusion and 37% after subsequent infusions. One- and two-year-remission probabilities were respectively 20% and 10%. Median time intervals between complete oral-agent withdrawal and relapse were 5.6 and 8.5 months respectively following the first and subsequent courses. Time to reconstitution of CD20 cells correlated with the duration of remission, but was not associated with variation in FcyR, CD20 or SMPDL-3B polymorphisms. Podocyte Src phosphorylation was normal. Rituximab can be safely and repeatedly used as prednisone and calcineurin-inhibitor-sparing therapy in a considerable proportion of children with dependent forms of idiopathic nephrotic syndrome. Further research is needed to identify patients who will benefit most from rituximab therapy
    corecore