132 research outputs found
Cálculo de la longitud mÃnima de aproximación para una canaleta Parshall a través de la comparación del comportamiento hidráulico entre un modelo numérico y un modelo fÃsico
Trabajo de InvestigaciónLa canaleta Parshall es una estructura hidraulica de gran empleabilidad dentro del campo de la Ingenieria, uno de sus usos es aforador de caudal o instrumento medidor. Pero en medio de su funcionalidad presenta problemas a la hora de encontrar obstaculos a la entrada de la canaleta, lo que hace que se alteren las laminas de agua, causando grandes problemas a su funcionalidad. El presente estudio propone un analisis en la longitud de aproximacion a la entrada de la canaleta en donde al interponer obstaculos, no se causara ninguna interferencia a las laminas de agua.
Para el estudio efectivo se utiliza la herramienta computacional OpenFoam, con el fin de de determinar que longitud es la más exacta para no alterar las condiciones del flujo. De la misma manera estos resultados son comparados con un modelo a escala de laboratorioINTRODUCCIÓN
1. GENERALIDADES
2. MARCO DE REFERENCIA
3. METODOLOGIA
4. RESULTADOS
5. CONCLUSIONES
6. RECOMENDACIONES
7. ANEXOS
8. BIBLIOGRAFIAPregradoIngeniero Civi
Shaking table tests and numerical analyses on a scaled dry-joint arch undergoing windowed sine pulses
The damages occurred during recent seismic events have emphasised the vulnerability of vaulted masonry structures, one of the most representative elements of worldwide cultural heritage. Although a certain consensus has been reached regarding the static behaviour of masonry arches, still more efforts are requested to investigate their dynamic behaviour. In this regard, the present paper aims to investigate the performance of a scaled dry-joint arch undergoing windowed sine pulses. A feature tracking based measuring technique was employed to evaluate the displacement of selected points, shading light on the failure mechanisms and gathering data for the calibration of the numerical model. This was built according to a micro-modelling approach of the finite element method, with voussoirs assumed very stiff and friction interface elements. Comparisons with existing literature are also stressed, together with comments about scale effects.This work was partly financed by FEDER funds through the Competitivity Factors Operational Programme-COMPETE and by national funds through FCT-Foundation for Science and Technology within the scope of the Project POCI-01-0145-FEDER-007633.info:eu-repo/semantics/publishedVersio
Repair of composite-to-masonry bond using flexible matrix
The paper presents an experimental investigation on an innovative repair method, in which composite
reinforcements, after debonding, are re-bonded to the substrate using a highly deformable polymer. In order
to assess the effectiveness of this solution, shear bond tests were carried out on brick and masonry substrates within two Round Robin Test series organized within the RILEM TC 250-CSM: Composites for Sustainable strengthening of Masonry. Five laboratories from Italy, Poland and Portugal were involved. The shear bond performance of the reinforcement systems before and after repair were compared in terms of ultimate loads, load-displacement curves and strain distributions. The results showed that the proposed repair method may provide higher strength and ductility than stiff epoxy resins, making it an effective and cost efficient technique for several perspective structural applications
Percutaneous treatment of patients with heart diseases: selection, guidance and follow-up. A review
Aortic stenosis and mitral regurgitation, patent foramen ovale, interatrial septal defect, atrial fibrillation and perivalvular leak, are now amenable to percutaneous treatment. These percutaneous procedures require the use of Transthoracic (TTE), Transesophageal (TEE) and/or Intracardiac echocardiography (ICE). This paper provides an overview of the different percutaneous interventions, trying to provide a systematic and comprehensive approach for selection, guidance and follow-up of patients undergoing these procedures, illustrating the key role of 2D echocardiography
No evidence of association between prothrombotic gene polymorphisms and the development of acute myocardial infarction at a young age
Background : we investigated the association between 9 polymorphisms of genes encoding hemostasis factors and
myocardial infarction in a large sample of young patients chosen because they have less coronary atherosclerosis than
older patients, and thus their disease is more likely to be related to a genetic predisposition to a prothrombotic state Methods and Results : this nationwide case-control study involved 1210 patients who had survived a first myocardial infarction at an age of 45 years who underwent coronary arteriography in 125 coronary care units and 1210 healthy subjects matched for age, sex, and geographical origin. None of the 9 polymorphisms of genes encoding proteins involved in coagulation (G-455A -fibrinogen: OR, 1.0; CI, 0.8 to 1.2; G1691A factor V: OR, 1.1; CI, 0.6 to 2.1; G20210A factor II: OR, 1.0; CI, 0.5 to 1.9; and G10976A factor VII: OR, 1.0; CI, 0.8 to 1.3), platelet function (C807T
glycoprotein Ia: OR, 1.1; CI, 0.9 to 1.3; and C1565T glycoprotein IIIa: OR, 0.9; CI, 0.8 to 1.2), fibrinolysis (G185T factor XIII: OR, 1.2; CI, 0.9 to 1.6; and 4G/5G plasminogen activator inhibitor type 1: OR, 0.9; CI, 0.7 to 1.2), or homocysteine metabolism (C677T methylenetetrahydrofolate reductase: OR, 0.9; CI, 0.8 to 1.1) were associated with an increased or decreased risk of myocardial infarction Conclusions : this study provides no evidence supporting an association between 9 polymorphisms of genes encoding proteins involved in hemostasis and the occurrence of premature myocardial infarction or protection against it
Advanced Material Thermomechanical Modelling of Shape Memory Alloys Applied to Automotive Design
This study introduces an innovative approach to enhancing aerodynamic efficiency in automotive applications by exploiting shape memory alloy technology. To this end, a thorough investigation of the thermomechanical behaviour of these alloys was conducted in the paper. Using a UMAT subroutine, the pseudoelastic effect and the shape memory effect of these smart materials were analysed numerically simultaneously, allowing accurate predictions of their behaviour under different loads, and facilitating the design and optimization of devices and systems based on SMAs. Therefore, the article proposes an innovative solution to optimize aerodynamic efficiency by using a Grille Shutter with variable openings. The Active Grille Shutter uses a bistable SMA actuator, allowing two optimal opening positions for specific load conditions. These actuators hold two stable states without energy consumption, ensuring efficient and reliable operation and allowing rapid transitions between the two states, making them ideal for applications that require timely responses. By using this specially designed and numerically analysed system, it has been confirmed that suitably dimensioned shape memory springs can guarantee a movement of the blades of the 90°, allowing an improvement in vehicle efficiency of about 4% at a speed of 140 km/h
Shape Memory Alloys Applied to Automotive Adaptive Aerodynamics
Shape memory alloys (SMAs) are gaining popularity in the fields of automotive and aerospace engineering due to their unique thermomechanical properties. This paper proposes a numerical implementation of a comprehensive constitutive model for simulating the thermomechanical behavior of shape memory alloys, with temperature and strain as control variables to adjust the shape memory effect and super elasticity effect of the material. By implementing this model as a user subroutine in the FE code Abaqus/Standard, it becomes possible to account for variations in material properties in complex components made of shape memory alloys. To demonstrate the potential of the proposed model, a skid plate system design is presented. The system uses bistable actuators with shape memory alloy springs to trigger plate movement. The kinematics and dynamics of the system are simulated, and effective loads are generated by the shape memory alloy state change due to the real temperature distribution in the material, which depends on the springs’ geometrical parameters. Finally, the performance of the actuator in switching between different configurations and maintaining stability in a specific configuration is assessed. The study highlights the promising potential of shape memory alloys in engineering applications and demonstrates the ability to use them in complex systems with accurate simulations
- …