53 research outputs found

    Protein Unfolding by Peptidylarginine Deiminase SUBSTRATE SPECIFICITY AND STRUCTURAL RELATIONSHIPS OF THE NATURAL SUBSTRATES TRICHOHYALIN AND FILAGGRIN

    Get PDF
    Peptidylarginine deiminases, which are commonly found in mammalian cells, catalyze the deimination of protein-bound arginine residues to citrullines. However, very little is known about their substrate requirements and the significance or consequences of this postsynthetic modification. We have explored this reaction in vitro with two known substrates filaggrin and trichohyalin. First, the degree and rate of modification of arginines to citrullines directly correlates with the structural order of the substrate. In filaggrin, which has little structural order, the reaction proceeded rapidly to >95% completion. However, in the highly alpha-helical protein trichohyalin, the reaction proceeded slowly to about 25% and could be forced to a maximum of about 65%. Second, the rate and degree of modification depends on the sequence location of the target arginines. Third, we show by gel electrophoresis, circular dichroism, and fluorescence spectroscopy that the reaction interferes with organized protein structure: the net formation of >/=10% citrulline results in protein denaturation. Cyanate modification of the lysines in model alpha-helix-rich proteins to homocitrullines also results in loss of organized structure. These data suggest that the ureido group on the citrulline formed by the peptidylarginine deiminase enzyme modification functions to unfold proteins due to decrease in net charge, loss of potential ionic bonds, and interference with H bonds

    Italian Vascular Flora: New Findings, Updates and Exploration of Floristic Similarities between Regions

    Get PDF
    The tradition of floristic studies in Italy has made it possible to obtain a good knowledge of plant diversity both on a national and regional scale. However, the lack of knowledge for some areas, advances in plant systematics and human activities related to globalization, highlight the need for further studies aimed at improving floristic knowledge. In this paper, based on fieldwork and herbaria and literature surveys, we update the knowledge on the Italian vascular flora and analyze the floristic similarities between the administrative regions. Four taxa, all exotic, were recorded for the first time in Italy and Europe. In detail, Elaeodendron croceum, Kalanchoe blossfeldiana, and Sedum spathulifolium var. spathulifolium were found as casual aliens, while Oxalis brasiliensis was reported as historical record based on some herbarium specimens. Furthermore, Kalanchoe laxiflora was confirmed as a casual alien species for Italy and Europe. Status changes for some taxa were proposed at both national and regional levels, as well as many taxa were reported as new or confirmed at the regional level. Currently the Italian vascular flora comprises 9150 taxa of which 7547 are native (of which 1598 are Italian endemics) and 1603 are exotic at the national level. The multivariate analysis of updated floristic data on a regional scale showed a clear distribution along the latitudinal gradient, in accordance with the natural geographical location of the regions in Italy. This pattern of plants distribution was not affected by the introduction of alien species. Despite some taxonomic and methodological issues which are still open, the data obtained confirm the important role of floristic investigations in the field and in herbaria, as well as the collaborative approach among botanists, in order to improve the knowledge of the Italian and European vascular flora

    Correlation spectroscopy and molecular dynamics simulations to study the structural features of proteins.

    Get PDF
    In this work, we used a combination of fluorescence correlation spectroscopy (FCS) and molecular dynamics (MD) simulation methodologies to acquire structural information on pH-induced unfolding of the maltotriose-binding protein from Thermus thermophilus (MalE2). FCS has emerged as a powerful technique for characterizing the dynamics of molecules and it is, in fact, used to study molecular diffusion on timescale of microsecond and longer. Our results showed that keeping temperature constant, the protein diffusion coefficient decreased from 84±4 µm(2)/s to 44±3 µm(2)/s when pH was changed from 7.0 to 4.0. An even more marked decrease of the MalE2 diffusion coefficient (31±3 µm(2)/s) was registered when pH was raised from 7.0 to 10.0. According to the size of MalE2 (a monomeric protein with a molecular weight of 43 kDa) as well as of its globular native shape, the values of 44 µm(2)/s and 31 µm(2)/s could be ascribed to deformations of the protein structure, which enhances its propensity to form aggregates at extreme pH values. The obtained fluorescence correlation data, corroborated by circular dichroism, fluorescence emission and light-scattering experiments, are discussed together with the MD simulations results

    Anion size modulates the structure of the a state of cytochrome c

    No full text
    Several studies have shown that anions induce collapse of acid-denatured cytochrome c into the compact A state having the properties of the molten globule and that the anion charge is the main determinant for the A state stabilization. The results here reported show that the anion size plays a role in determining the overall structure of the A state. In particular, small anions induce formation of an A state in which the native Met80-Fe(III) axial bond is recovered and the nativelike redox properties restored. On the other hand, the A state stabilized by large anions shows a hisfidine (His26 or His33) as the sixth ligand of the heme-iron, a very weak interaction between Trp59 and the heme propionate, and lacks nativelike redox properties. The two anion-stabilized states show similar stability, indicating that (i) the hydrophobic core (which is equally stabilized by all the anions investigated, independently of their size) is the region that mainly contributes to the macromolecule stabilization, and (ii) the flexible loops are responsible for the spectroscopic (and, thus, structural) and redox differences observed

    One for All, All for One: The Peculiar Dynamics of TNF-Receptor-Associated Factor (TRAF2) Subunits

    No full text
    TNF Receptor-Associated Factor 2 (TRAF2) is a homo-trimer belonging to the TNF-receptor-associated factor family (TRAFs). The TRAF2 oligomeric state is crucial for receptor binding, the interaction with other proteins (involved in the TNFR signaling), and the interaction with biological membranes. In this study, we present a computational analysis of the Molecular Dynamics of TRAF2-C (a truncated and soluble TRAF2 form) to identify patterns in the interactions between the three chains. We have performed a canonical analysis of the motion applied to molecular dynamics starting from the available crystal structure to identify correlated motions in TRAF2 dynamics. We have computed the displacement matrix, providing a frame-by-frame displacement for each residue in the dynamic. We provide the results in terms of the correlation matrix, which represents a detailed map of the correlated motions of residues. Eventually, we computed the so-called dynamical clusters, based on the Principal Component Analysis (PCA) of the motion (displacement) and the k means application on the first two principal components space. The results clearly indicate that, most of the time, two chains move in a strongly correlated motion, while the third chain follows a freer motion. A detailed analysis of the correlation matrix also shows that a few specific interface residues characterize the interaction of the more independent subunit with the other two. These findings suggest that the equilibrium between the trimer and the dissociated species (dimers and monomers) might be finely tuned by controlling a few critical residues in the protein quaternary structure, probably facilitating the regulation of oligomerization and dissociation in vivo

    One for All, All for One: The Peculiar Dynamics of TNF-Receptor-Associated Factor (TRAF2) Subunits

    No full text
    TNF Receptor-Associated Factor 2 (TRAF2) is a homo-trimer belonging to the TNF-receptor-associated factor family (TRAFs). The TRAF2 oligomeric state is crucial for receptor binding, the interaction with other proteins (involved in the TNFR signaling), and the interaction with biological membranes. In this study, we present a computational analysis of the Molecular Dynamics of TRAF2-C (a truncated and soluble TRAF2 form) to identify patterns in the interactions between the three chains. We have performed a canonical analysis of the motion applied to molecular dynamics starting from the available crystal structure to identify correlated motions in TRAF2 dynamics. We have computed the displacement matrix, providing a frame-by-frame displacement for each residue in the dynamic. We provide the results in terms of the correlation matrix, which represents a detailed map of the correlated motions of residues. Eventually, we computed the so-called dynamical clusters, based on the Principal Component Analysis (PCA) of the motion (displacement) and the k means application on the first two principal components space. The results clearly indicate that, most of the time, two chains move in a strongly correlated motion, while the third chain follows a freer motion. A detailed analysis of the correlation matrix also shows that a few specific interface residues characterize the interaction of the more independent subunit with the other two. These findings suggest that the equilibrium between the trimer and the dissociated species (dimers and monomers) might be finely tuned by controlling a few critical residues in the protein quaternary structure, probably facilitating the regulation of oligomerization and dissociation in vivo

    Conformational Dynamics of Lipoxygenases and Their Interaction with Biological Membranes

    No full text
    Lipoxygenases (LOXs) are a family of enzymes that includes different fatty acid oxygenases with a common tridimensional structure. The main functions of LOXs are the production of signaling compounds and the structural modifications of biological membranes. These features of LOXs, their widespread presence in all living organisms, and their involvement in human diseases have attracted the attention of the scientific community over the last decades, leading to several studies mainly focused on understanding their catalytic mechanism and designing effective inhibitors. The aim of this review is to discuss the state-of-the-art of a different, much less explored aspect of LOXs, that is, their interaction with lipid bilayers. To this end, the general architecture of six relevant LOXs (namely human 5-, 12-, and 15-LOX, rabbit 12/15-LOX, coral 8-LOX, and soybean 15-LOX), with different specificity towards the fatty acid substrates, is analyzed through the available crystallographic models. Then, their putative interface with a model membrane is examined in the frame of the conformational flexibility of LOXs, that is due to their peculiar tertiary structure. Finally, the possible future developments that emerge from the available data are discussed
    • …
    corecore