97 research outputs found

    Endocrine resistance in hormone receptor positive breast cancer–from mechanism to therapy

    Get PDF
    The importance and role of the estrogen receptor (ER) pathway has been well-documented in both breast cancer (BC) development and progression. The treatment of choice in women with metastatic breast cancer (MBC) is classically divided into a variety of endocrine therapies, 3 of the most common being: selective estrogen receptor modulators (SERM), aromatase inhibitors (AI) and selective estrogen receptor down-regulators (SERD). In a proportion of patients, resistance develops to endocrine therapy due to a sophisticated and at times redundant interference, at the molecular level between the ER and growth factor. The progression to endocrine resistance is considered to be a gradual, step-wise process. Several mechanisms have been proposed but thus far none of them can be defined as the complete explanation behind the phenomenon of endocrine resistance. Although multiple cellular, molecular and immune mechanisms have been and are being extensively studied, their individual roles are often poorly understood. In this review, we summarize current progress in our understanding of ER biology and the molecular mechanisms that predispose and determine endocrine resistance in breast cancer patients

    Shooting the messenger: a systematic review investigating extracellular vesicle isolation and characterisation methods and their influence on understanding extracellular vesicles-radiotherapy interactions in glioblastoma

    Get PDF
    BACKGROUND: Extracellular vesicles (EVs) hold promise for improving our understanding of radiotherapy response in glioblastoma due to their role in intercellular communication within the tumour microenvironment (TME). However, methodologies to study EVs are evolving with significant variation within the EV research community. METHODS: We conducted a systematic review to critically appraise EV isolation and characterisation methodologies and how this influences our understanding of the findings from studies investigating radiotherapy and EV interactions in glioblastoma. 246 articles published up to 24/07/2023 from PubMed and Web of Science were identified using search parameters related to radiotherapy, EVs, and glioblastoma. Two reviewers evaluated study eligibility and abstracted data. RESULTS: In 26 articles eligible for inclusion (16 investigating the effects of radiotherapy on EVs, five investigating the effect of EVs on radiation response, and five clinical studies), significant heterogeneity and frequent omission of key characterisation steps was identified, reducing confidence that the results are related to EVs and their cargo as opposed to co-isolated bioactive molecules. However, the results are able to clearly identify interactions between EVs and radiotherapy bi-directionally within different cell types within the glioblastoma TME. These interactions facilitate transferable radioresistance and oncogenic signalling, highlighting that EVs are an important component in the variability of glioblastoma radiotherapy response. CONCLUSIONS: Future multi-directional investigations interrogating the whole TME are required to improve subsequent clinical translation, and all studies should incorporate up to date controls and reporting requirements to increase the validity of their findings. This would be facilitated by increased collaboration between less experienced and more experienced EV research groups

    SILAC-based phosphoproteomics reveals an inhibitory role of KSR1 in p53 transcriptional activity via modulation of DBC1

    Get PDF
    BACKGROUND We have previously identified kinase suppressor of ras-1 (KSR1) as a potential regulatory gene in breast cancer. KSR1, originally described as a novel protein kinase, has a role in activation of mitogen-activated protein kinases. Emerging evidence has shown that KSR1 may have dual functions as an active kinase as well as a scaffold facilitating multiprotein complex assembly. Although efforts have been made to study the role of KSR1 in certain tumour types, its involvement in breast cancer remains unknown. METHODS A quantitative mass spectrometry analysis using stable isotope labelling of amino acids in cell culture (SILAC) was implemented to identify KSR1-regulated phosphoproteins in breast cancer. In vitro luciferase assays, co-immunoprecipitation as well as western blotting experiments were performed to further study the function of KSR1 in breast cancer. RESULTS Of significance, proteomic analysis reveals that KSR1 overexpression decreases deleted in breast cancer-1 (DBC1) phosphorylation. Furthermore, we show that KSR1 decreases the transcriptional activity of p53 by reducing the phosphorylation of DBC1, which leads to a reduced interaction of DBC1 with sirtuin-1 (SIRT1); this in turn enables SIRT1 to deacetylate p53. CONCLUSION Our findings integrate KSR1 into a network involving DBC1 and SIRT1, which results in the regulation of p53 acetylation and its transcriptional activity

    Estrogen receptor degradation: a CUE for endocrine resistance?

    Get PDF
    Despite the undoubted success of adjuvant endocrine therapies that target the estrogen receptor pathway, not all women with estrogen receptor-positive breast cancer respond to these therapies, and many who initially respond will subsequently relapse. Deregulation of various aspects of estrogen receptor signaling has been highlighted as a mechanism of resistance and as a basis for alternative therapeutic approaches. However, a recent publication refocuses attention on the estrogen receptor itself by showing that the ubiquitin-binding CUE domain-containing protein 2 is a regulator of estrogen receptor protein degradation and a marker of endocrine resistance in breast cancer

    LMTK3 confers chemo-resistance in breast cancer

    Get PDF
    Lemur tyrosine kinase 3 (LMTK3) is an oncogenic kinase that is involved in different types of cancer (breast, lung, gastric, colorectal) and biological processes including proliferation, invasion, migration, chromatin remodeling as well as innate and acquired endocrine resistance. However, the role of LMTK3 in response to cytotoxic chemotherapy has not been investigated thus far. Using both 2D and 3D tissue culture models, we found that overexpression of LMTK3 decreased the sensitivity of breast cancer cell lines to cytotoxic (doxorubicin) treatment. In a mouse model we showed that ectopic overexpression of LMTK3 decreases the efficacy of doxorubicin in reducing tumor growth. Interestingly, breast cancer cells overexpressing LMTK3 delayed the generation of double strand breaks (DSBs) after exposure to doxorubicin, as measured by the formation of γH2AX foci. This effect was at least partly mediated by decreased activity of ataxia-telangiectasia mutated kinase (ATM) as indicated by its reduced phosphorylation levels. In addition, our RNA-seq analyses showed that doxorubicin differentially regulated the expression of over 700 genes depending on LMTK3 protein expression levels. Furthermore, these genes were found to promote DNA repair, cell viability and tumorigenesis processes / pathways in LMTK3-overexpressing MCF7 cells. In human cancers, immunohistochemistry staining of LMTK3 in pre- and postchemotherapy breast tumor pairs from four separate clinical cohorts revealed a significant increase of LMTK3 following both doxorubicin and docetaxel based chemotherapy. In aggregate, our findings show for the first time a contribution of LMTK3 in cytotoxic drug resistance in breast cancer

    Propranolol reduces IFN-γ driven PD-L1 immunosuppression and improves anti-tumour immunity in ovarian cancer

    Get PDF
    The immune system plays an important role in controlling epithelial ovarian cancer (EOC). EOC is considered to be a "cold tumour," a tumour that has not triggered a strong response by the immune system. However, tumour infiltrating lymphocytes (TILs) and the expression of programmed cell death ligand (PD-L1) are used as prognostic indicators in EOC. Immunotherapy such as PD-(L)1 inhibitors have shown limited benefit in EOC. Since the immune system is affected by behavioural stress and the beta-adrenergic signalling pathway, this study aimed to explore the impact of propranolol (PRO), a beta-blocker, on anti-tumour immunity in both in vitro and in vivo EOC models. Noradrenaline (NA), an adrenergic agonist, did not directly regulate PD-L1 expression but PD-L1 was significantly upregulated by IFN-γ in EOC cell lines. IFN-γ also increased PD-L1 on extracellular vesicles (EVs) released by ID8 cells. PRO significantly decreased IFN-γ levels in primary immune cells activated ex vivo and showed increased viability of the CD8+ cell population in an EV-immune cell co-incubation. In addition, PRO reverted PD-L1 upregulation and significantly decreased IL-10 levels in an immune-cancer cell co-culture. Chronic behavioural stress increased metastasis in mice while PRO monotherapy and the combo of PRO and PD-(L)1 inhibitor significantly decreased stress-induced metastasis. The combined therapy also reduced tumour weight compared to the cancer control group and induced anti-tumour T-cell responses with significant CD8 expression in tumour tissues. In conclusion, PRO showed a modulation of the cancer immune response by decreasing IFN-γ production and, in turn, IFN-γ-mediated PD-L1 overexpression. The combined therapy of PRO and PD-(L)1 inhibitor decreased metastasis and improved anti-tumour immunity offering a promising new therapy

    The structure-function relationship of oncogenic LMTK3

    Get PDF
    Elucidating signaling driven by lemur tyrosine kinase 3 (LMTK3) could help drug development. Here, we solve the crystal structure of LMTK3 kinase domain to 2.1Å resolution, determine its consensus motif and phosphoproteome, unveiling in vitro and in vivo LMTK3 substrates. Via high-throughput homogeneous time-resolved fluorescence screen coupled with biochemical, cellular, and biophysical assays, we identify a potent LMTK3 small-molecule inhibitor (C28). Functional and mechanistic studies reveal LMTK3 is a heat shock protein 90 (HSP90) client protein, requiring HSP90 for folding and stability, while C28 promotes proteasome-mediated degradation of LMTK3. Pharmacologic inhibition of LMTK3 decreases proliferation of cancer cell lines in the NCI-60 panel, with a concomitant increase in apoptosis in breast cancer cells, recapitulating effects of LMTK3 gene silencing. Furthermore, LMTK3 inhibition reduces growth of xenograft and transgenic breast cancer mouse models without displaying systemic toxicity at effective doses. Our data reinforce LMTK3 as a druggable target for cancer therap

    MicroRNAs targeting oncogenes are down-regulated in pancreatic malignant transformation from benign tumors

    Get PDF
    BACKGROUND MicroRNA (miRNA) expression profiles have been described in pancreatic ductal adenocarcinoma (PDAC), but these have not been compared with pre-malignant pancreatic tumors. We wished to compare the miRNA expression signatures in pancreatic benign cystic tumors (BCT) of low and high malignant potential with PDAC, in order to identify miRNAs deregulated during PDAC development. The mechanistic consequences of miRNA dysregulation were further evaluated. METHODS Tissue samples were obtained at a tertiary pancreatic unit from individuals with BCT and PDAC. MiRNA profiling was performed using a custom microarray and results were validated using RT-qPCR prior to evaluation of miRNA targets. RESULTS Widespread miRNA down-regulation was observed in PDAC compared to low malignant potential BCT. We show that amongst those miRNAs down-regulated, miR-16, miR-126 and let-7d regulate known PDAC oncogenes (targeting BCL2, CRK and KRAS respectively). Notably, miR-126 also directly targets the KRAS transcript at a "seedless" binding site within its 3'UTR. In clinical specimens, miR-126 was strongly down-regulated in PDAC tissues, with an associated elevation in KRAS and CRK proteins. Furthermore, miR-21, a known oncogenic miRNA in pancreatic and other cancers, was not elevated in PDAC compared to serous microcystic adenoma (SMCA), but in both groups it was up-regulated compared to normal pancreas, implicating early up-regulation during malignant change. CONCLUSIONS Expression profiling revealed 21 miRNAs down-regulated in PDAC compared to SMCA, the most benign lesion that rarely progresses to invasive carcinoma. It appears that miR-21 up-regulation is an early event in the transformation from normal pancreatic tissue. MiRNA expression has the potential to distinguish PDAC from normal pancreas and BCT. Mechanistically the down-regulation of miR-16, miR-126 and let-7d promotes PDAC transformation by post-transcriptional up-regulation of crucial PDAC oncogenes. We show that miR-126 is able to directly target KRAS; re-expression has the potential as a therapeutic strategy against PDAC and other KRAS-driven cancers

    Phosphorylation of Rab-coupling protein by LMTK3 controls Rab14-dependent EphA2 trafficking to promote cell:cell repulsion

    Get PDF
    The Rab GTPase effector, Rab-coupling protein (RCP) is known to promote invasive behaviour in vitro by controlling integrin and receptor tyrosine kinase (RTK) trafficking, but how RCP influences metastasis in vivo is unclear. Here we identify an RTK of the Eph family, EphA2, to be a cargo of an RCP-regulated endocytic pathway which controls cell:cell repulsion and metastasis in vivo. Phosphorylation of RCP at Ser435 by Lemur tyrosine kinase-3 (LMTK3) and of EphA2 at Ser897 by Akt are both necessary to promote Rab14-dependent (and Rab11-independent) trafficking of EphA2 which generates cell:cell repulsion events that drive tumour cells apart. Genetic disruption of RCP or EphA2 opposes cell:cell repulsion and metastasis in an autochthonous mouse model of pancreatic adenocarcinoma—whereas conditional knockout of another RCP cargo, α5 integrin, does not suppress pancreatic cancer metastasis—indicating a role for RCP-dependent trafficking of an Eph receptor to drive tumour dissemination in vivo
    corecore