2,558 research outputs found

    Measurement of 1323 and 1487 keV resonances in 15N({\alpha}, {\gamma})19F with the recoil separator ERNA

    Get PDF
    The origin of fluorine is a widely debated issue. Nevertheless, the ^{15}N({\alpha},{\gamma})^{19}F reaction is a common feature among the various production channels so far proposed. Its reaction rate at relevant temperatures is determined by a number of narrow resonances together with the DC component and the tails of the two broad resonances at E_{c.m.} = 1323 and 1487 keV. Measurement through the direct detection of the 19F recoil ions with the European Recoil separator for Nuclear Astrophysics (ERNA) were performed. The reaction was initiated by a 15N beam impinging onto a 4He windowless gas target. The observed yield of the resonances at Ec.m. = 1323 and 1487 keV is used to determine their widths in the {\alpha} and {\gamma} channels. We show that a direct measurement of the cross section of the ^{15}N({\alpha},{\gamma})^{19}F reaction can be successfully obtained with the Recoil Separator ERNA, and the widths {\Gamma}_{\gamma} and {\Gamma}_{\alpha} of the two broad resonances have been determined. While a fair agreement is found with earlier determination of the widths of the 1487 keV resonance, a significant difference is found for the 1323 keV resonance {\Gamma}_{\alpha} . The revision of the widths of the two more relevant broad resonances in the 15N({\alpha},{\gamma})19F reaction presented in this work is the first step toward a more firm determination of the reaction rate. At present, the residual uncertainty at the temperatures of the ^{19}F stellar nucleosynthesis is dominated by the uncertainties affecting the Direct Capture component and the 364 keV narrow resonance, both so far investigated only through indirect experiments.Comment: 8 pages, 11 figures. Accepted for publication in PR

    The effect of 12C + 12C rate uncertainties on s-process yields

    Full text link
    The slow neutron capture process in massive stars (the weak s-process) produces most of the s-only isotopes in the mass region 60 < A < 90. The nuclear reaction rates used in simulations of this process have a profound effect on the final s-process yields. We generated 1D stellar models of a 25 solar mass star varying the 12C + 12C rate by a factor of 10 and calculated full nucleosynthesis using the post-processing code PPN. Increasing or decreasing the rate by a factor of 10 affects the convective history and nucleosynthesis, and consequently the final yields.Comment: Conference proceedings for the Nuclear Physics in Astrophysics IV conference, 8-12 June 2009. 4 pages, 3 figures. Accepted for publication to the Journal of Physics: Conference Serie

    Measurement of the half-life of 198Au in a non-metal: High-precision measurement shows no host-material dependence

    Get PDF
    We have measured the half-life of the beta decay of 198Au to be 2.6948(9) d, with the nuclide sited in an insulating environment. Comparing this result with the half-life we measured previously with a metallic environment, we find the half-lives in both environments to be the same within 0.04%, thus contradicting a prediction that screening from a "plasma" of quasi-free electrons in a metal increases the half-life by as much as 7%

    A Directorial Approach: Victor Gialanella\u27s Adaptation of Mary Shelley\u27s Frankenstein

    Get PDF

    Assessment of the radiological impact of a decommissioning nuclear power plant in Italy

    Full text link
    The assessment of the radiological impact of a decommissioning Nuclear Power Plant is presented here through the results of an environmental monitoring survey carried out in the area surrounding the Garigliano Power Plant. The levels of radioactivity in soil, water, air and other environmental matrices are shown, in which {\alpha}, {\beta} and {\gamma} activity and {\gamma} equivalent dose rate are measured. Radioactivity levels of the samples from the Garigliano area are analyzed and then compared to those from a control zone situated more than 100 km away. Moreover, a comparison is made with a previous survey held in 2001. The analyses and comparisons show no significant alteration in the radiological characteristics of the area surroundings the plant, with an overall radioactivity depending mainly from the global fallout and natural sources.Comment: 13 pages, 6 figures, 2 table

    Assessment of the radiological impact of a decommissioning nuclear power plant in Italy

    Get PDF
    The assessment of the radiological impact of a decommissioning Nuclear Power Plant is presented here through the results of an environmental monitoring survey carried out in the area surrounding the Garigliano Power Plant. The levels of radioactivity in soil, water, air and other environmental matrices are shown, in which {\alpha}, {\beta} and {\gamma} activity and {\gamma} equivalent dose rate are measured. Radioactivity levels of the samples from the Garigliano area are analyzed and then compared to those from a control zone situated more than 100 km away. Moreover, a comparison is made with a previous survey held in 2001. The analyses and comparisons show no significant alteration in the radiological characteristics of the area surroundings the plant, with an overall radioactivity depending mainly from the global fallout and natural sources

    Calibration of White Dwarf cooling sequences: theoretical uncertainty

    Full text link
    White Dwarf luminosities are powerful age indicators, whose calibration should be based on reliable models. We discuss the uncertainty of some chemical and physical parameters and their influence on the age estimated by means of white dwarf cooling sequences. Models at the beginning of the white dwarf sequence have been obtained on the base of progenitor evolutionary tracks computed starting from the zero age horizontal branch and for a typical halo chemical composition (Z=0.0001, Y=0.23). The uncertainties due to nuclear reaction rates, convection, mass loss and initial chemical composition are discussed. Then, various cooling sequences for a typical white dwarf mass (M=0.6 Mo) have been calculated under different assumptions on some input physics, namely: conductive opacity, contribution of the ion-electron interaction to the free energy and microscopic diffusion. Finally we present the evolution of white dwarfs having mass ranging between 0.5 and 0.9 Mo. Much effort has been spent to extend the equation of state down to the low temperature and high density regime. An analysis of the latest improvement in the physics of white dwarf interiors is presented. We conclude that at the faint end of the cooling sequence (log L/Lo=-5.5) the present overall uncertainty on the age is of the order of 20%, which correspond to about 3 Gyr. We suggest that this uncertainty could be substantially reduced by improving our knowledge of the conductive opacity (especially in the partially degenerate regime) and by fixing the internal stratification of C and O.Comment: 14 figures, accepted by Ap

    Easy and green route towards nanostructured ZnO as active sensing material with unexpected H2S dosimeter-type behaviour

    Get PDF
    Nanostructured ZnO particles were prepared through a straightforward, quick and low\u2010temperature synthesis route involving coprecipitation of the metal precursor salts with oxalic acid, followed by hydrothermal treatment at 135 or 160 \ub0C. The synthesised nanostructured powders were thoroughly characterised by a wide array of analytical techniques from the morphological (Scanning Electron Microscopy \u2013SEM\u2010, Transmission Electron Microscopy \u2010TEM\u2010, Energy\u2010dispersive X\u2010ray Spectroscopy \u2010EDXS\u2010), structural (Powder X\u2010Ray Diffraction \u2010PXRD\u2010, Selected Area Electron Diffraction \u2010SAED\u2010), compositional (X\u2010ray Photoelectron Spectroscopy \u2010XPS\u2010) and physical (thermal stability) point of view. As far as functional applications are concerned, the powders were tested as gas sensor materials for H2S detection. Thereby these ZnO particles show unexpected gas dosimeter behaviour at 150 \ub0C. Based on these observations and on a comparison with literature a new model for the interaction of ZnO nanostructures with H2S is proposed
    • …
    corecore