57 research outputs found

    Planning precision aquaculture activities in a changing and crowded sea

    Get PDF
    Extreme climate events are increasingly challenging the growth of the marine aquaculture sector, causing local influences on species performance and affecting production and yield - impacting where to locate cage aquaculture facilities. Here we produced scenario-based quantitative maps using modelled species-specific performance combined with predicted high-resolution future IPCC temperature scenarios. We ran a species-specific Dynamic Energy Budget mechanistic model for four model species, up to 2050, and mapped functional trait-based outcomes as: i) time to reach the commercial size, ii) feces produced and iii) uneaten food. A high spatial resolution suitability index allowed the sustainability of farming strategies for single- and multi-species to be identified across a 159.696 km2 surface extension (Italian Exclusive Economic Zone; 6% of the Mediterranean basin surface). Providing a good case study to shed light on difficult questions facing aquaculture planning around the world. Good future performance under both representative concentration pathway (RCP) scenarios were modelled for Sea bream and European seabass in inshore waters. Performance of Mediterranean mussels and Japanese oysters was found to decrease slightly when compared to the 2007–2010 time interval. Scenario-based quantitative maps represent a heterogeneous species-specific knowledge layer that is critical to better inform aquaculture management and development strategies. Yet this knowledge layer is missing from the process to develop climate-resilient risk maps and associated adaptation measures, as well as when informing stakeholders on potential site expansion and/or the establishment of nascent aquaculture industry sites

    Moving Toward a Strategy for Addressing Climate Displacement of Marine Resources: A Proof-of-Concept

    Get PDF
    Realistic predictions of climate change effects on natural resources are central to adaptation policies that try to reduce these impacts. However, most current forecasting approaches do not incorporate species-specific, process-based biological information, which limits their ability to inform actionable strategies. Mechanistic approaches, incorporating quantitative information on functional traits, can potentially predict species- and population-specific responses that result from the cumulative impacts of small-scale processes acting at the organismal level, and can be used to infer population-level dynamics and inform natural resources management. Here we present a proof-of-concept study using the European anchovy as a model species that shows how a trait-based, mechanistic species distribution model can be used to explore the vulnerability of marine species to environmental changes, producing quantitative outputs useful for informing fisheries management. We crossed scenarios of temperature and food to generate quantitative maps of selected mechanistic model outcomes (e.g., Maximum Length and Total Reproductive Output). These results highlight changing patterns of source and sink spawning areas as well as the incidence of reproductive failure. This study demonstrates that model predictions based on functional traits can reduce the degree of uncertainty when forecasting future trends of fish stocks. However, to be effective they must be based on high spatial- and temporal resolution environmental data. Such a sensitive and spatially explicit predictive approach may be used to inform more effective adaptive management strategies of resources in novel climatic conditions

    Moving Toward a Strategy for Addressing Climate Displacement of Marine Resources: A Proof-of-Concept

    Get PDF
    Realistic predictions of climate change effects on natural resources are central to adaptation policies that try to reduce these impacts. However, most current forecasting approaches do not incorporate species-specific, process-based biological information, which limits their ability to inform actionable strategies. Mechanistic approaches, incorporating quantitative information on functional traits, can potentially predict species- and population-specific responses that result from the cumulative impacts of small-scale processes acting at the organismal level, and can be used to infer population-level dynamics and inform natural resources management. Here we present a proof-of-concept study using the European anchovy as a model species that shows how a trait-based, mechanistic species distribution model can be used to explore the vulnerability of marine species to environmental changes, producing quantitative outputs useful for informing fisheries management. We crossed scenarios of temperature and food to generate quantitative maps of selected mechanistic model outcomes (e.g., Maximum Length and Total Reproductive Output). These results highlight changing patterns of source and sink spawning areas as well as the incidence of reproductive failure. This study demonstrates that model predictions based on functional traits can reduce the degree of uncertainty when forecasting future trends of fish stocks. However, to be effective they must be based on high spatial- and temporal resolution environmental data. Such a sensitive and spatially explicit predictive approach may be used to inform more effective adaptive management strategies of resources in novel climatic conditions

    Moving Toward a Strategy for Addressing Climate Displacement of Marine Resources: A Proof-of-Concept

    Get PDF
    Realistic predictions of climate change effects on natural resources are central to adaptation policies that try to reduce these impacts. However, most current forecasting approaches do not incorporate species-specific, process-based biological information, which limits their ability to inform actionable strategies. Mechanistic approaches, incorporating quantitative information on functional traits, can potentially predict species- and population-specific responses that result from the cumulative impacts of small-scale processes acting at the organismal level, and can be used to infer population-level dynamics and inform natural resources management. Here we present a proof-of-concept study using the European anchovy as a model species that shows how a trait-based, mechanistic species distribution model can be used to explore the vulnerability of marine species to environmental changes, producing quantitative outputs useful for informing fisheries management. We crossed scenarios of temperature and food to generate quantitative maps of selected mechanistic model outcomes (e.g., Maximum Length and Total Reproductive Output). These results highlight changing patterns of source and sink spawning areas as well as the incidence of reproductive failure. This study demonstrates that model predictions based on functional traits can reduce the degree of uncertainty when forecasting future trends of fish stocks. However, to be effective they must be based on high spatial- and temporal resolution environmental data. Such a sensitive and spatially explicit predictive approach may be used to inform more effective adaptive management strategies of resources in novel climatic conditions

    High sustained efficacy of a prophylactic quadrivalent human papillomavirus types 6/11/16/18 L1 virus-like particle vaccine through 5 years of follow-up

    Get PDF
    Human papillomavirus (HPV) causes cervical, vulvar, and vaginal cancers, precancerous dysplasia, and genital warts. We report data for the longest efficacy evaluation to date of a prophylactic HPV vaccine. In total, 552 women (16–23 years) were enrolled in a randomised, placebo-controlled study of a quadrivalent HPV 6/11/16/18 L1 virus-like-particle vaccine with vaccination at months 0, 2, and 6. At regular intervals through 3 years, subjects underwent gynaecologic examination, cervicovaginal sampling for HPV DNA, serum anti-HPV testing, and Pap testing, with follow-up biopsy as indicated. A subset of 241 subjects underwent two further years of follow-up. At 5 years post enrolment, the combined incidence of HPV 6/11/16/18-related persistent infection or disease was reduced in vaccine-recipients by 96% (two cases vaccine versus 46 placebo). There were no cases of HPV 6/11/16/18-related precancerous cervical dysplasia or genital warts in vaccine recipients, and six cases in placebo recipients (efficacy=100%; 95% CI:12–100%). Through 5 years, vaccine-induced anti-HPV geometric mean titres remained at or above those following natural infection. In conclusion, a prophylactic quadrivalent HPV vaccine was effective through 5 years for prevention of persistent infection and disease caused by HPV 6/11/16/18. This duration supports vaccination of adolescents and young adults, which is expected to greatly reduce the burden of cervical and genital cancers, precancerous dysplasia, and genital warts

    Predicting effective aquaculture in subtropical waters: A dynamic energy budget model for the green lipped mussel, Perna viridis

    Get PDF
    The green lipped mussel, Perna viridis, is an important aquaculture species throughout the Indo-Pacific region where production is often impacted by environmental degradation. To predict the impacts and mitigate against environmental problems due to various kinds of anthropogenic pollution, such as heavy metals and eutrophication, on P. viridis aquaculture a Dynamic Energy Budget (DEB) model was constructed. By integrating species-specific parameters and regional-specific environmental data the DEB model determined how the life history traits of P. viridis respond to changing environmental conditions. Using various levels of basal maintenance costs and food availability to elucidate the energetic costs due to environmental pollution, the DEB model predicted that a 20% increase in basal maintenance cost due to environmental pollution such as heavy metals will result in a subsequent decrease in both lifetime reproductive output and ultimate body size of P. viridis by ~18% and ~8%, respectively. Increasing food availability can, however, mitigate the energetic constraints due to increased basal maintenance cost. The time to reach commercial size, for example, will be longer by 13% and 3% under lower and higher food availability conditions, respectively when there is a 20% increase in maintenance cost due to environmentally induced stress, which would significantly increase the operational cost of an aquaculture facility. In light of the increased importance of P. viridis as an aquaculture species, the P. viridis DEB model can, therefore, be used to illustrate the effects of varying environmental conditions on P. viridis life history traits which are relevant to the success of aquaculture facilities, and contribute towards better management of this species

    Predicting the effectiveness of oil recovery strategies in the marine polluted environment

    Get PDF
    Many recent studies have focused their attention on the physiological stress experienced by marine organisms in measuring ecotoxicological responses. Here we suggest a new approach for investigating the effects of an anthropogenic pollutant on Life-History (LH) traits of marine organisms, to provide stakeholders and policy makers an effective tool to evaluate the best environmental recovery strategies and plans. A Dynamic Energy Budget (DEB), coupled with a biophysical model was used to predict the effects of a six-month oil spill on Mytilus galloprovincialis' LH traits and to test two potential recovery strategies in the central Mediterranean Sea. Oxygen consumption rates were used to check for increasing energetic maintenance costs [ṗM] respectively in oil-polluted system treatments (∼76.2%) and polluted systems with physical (nano-bubbles ∼32.6%) or chemical treatment (dispersant ∼18.4%). Our model outputs highlighted a higher growth reduction of intertidal compared to subtidal populations and contextually an effect on the reproductive output and on the maturation time of this latter. The models also enabled an estimation of the timing of the disturbance affecting both the intertidal and subtidal populations' growth and reproduction. Interestingly, results led to the identification of the chemical dispersant as being the best remediation technique in contexts of oil spill contamination

    Local consumers are the first line to control biological invasions: a case of study with the whelk Stramonita haemastoma (Gastropoda: Muricidae)

    No full text
    The increasing spread of invasive species in the Mediterranean Sea determines several alterations in local food webs, changing the feeding habits of native organisms. The whelk Stramonita haemastoma is a widespread Mediterranean gastropod that consumes bivalves, barnacles and limpets. Previous studies showed a shift in its diet from the bivalve Mytilaster minimus to the invasive mussel Brachidontes pharaonis, presumably due to a higher energy gain. Here we tested whelks\u2019 preference among natives and a novel prey, calculating the profitability ratio, and integrating those results with biochemical analysis on prey tissues and the routine metabolism of the whelks. Further, we used the scaled functional response as a theoretical tool to describe whelk ability to obtain energy from their environment by using four different prey species: B. pharaonis, Mytilus galloprovincialis, M. minimus and Patella caerulea. Whelks evidenced a Type II functional response for all prey, while Brachidontes displayed a lower attack rate and a higher handling time. Stramonita showed a greater preference for Brachidontes, that resulted as the prey with the higher energetic content, and the second most profitable after Patella. This suggests that the higher energy gain is behind the change in the predator\u2019s diet, with possible effects on its energy budget

    Functional trait-based layers - an aquaculture siting tool for the Mediterranean Sea

    No full text
    Aquaculture, the current fastest-growing food sector, is one of the major opportunities that could be reaped to cope with the increased demand for proteins from the sea and simultaneously generate economic growth while ensuring sustainable use of natural resources. The number of tools and approaches suggested to promote the selection of suitable areas - focusing mostly on the management of potential conflicting uses at sea - is rapidly increasing. However, to date, there is a lack of information regarding spatial planning according to a trait-based approach encompassing the functional and biological data of farmed species; a gap that may lead to selecting unsuitable areas for farming. To fill this gap, our study builds on a functional trait-based mechanistic approach based on the Dynamic Energy Budget (DEB) theory allowing to generated species and site-specific predictions of aquaculture performances and the related environmental impact. We applied this approach to a commercial species farmed in the Mediterranean Sea, namely, the European seabass (Dicentrarchus labrax). We used three seeding sizes (1.5, 2, 2.5 g) to run model simulations and answer a crucial question for farm management, i.e. the selection of the best seeding size. A sensitivity analysis coupled with our simulations allowed to spatially represent the performance growth and environmental impact per seeding size across Mediterranean countries. The accuracy of the model's outcome was strengthened by using high-resolution satellite data over a wide area of investigation (c.a. 302,000 km2). The novel informative obtained layers combine both the modelling of aquaculture performance and related environmental impact to fill a lacking perspective within both AZAs (Allocated Zones for Aquaculture) and AZEs (Allowable Zones of Effect) concepts. Our approach allowed discriminating the best zones for European sea bass aquaculture at country level for each of the tested seeding sizes. High-resolution predictions of aquaculture performances and impact were provided for each of the nineteen Mediterranean coastal countries, zooming at Exclusive Economic Zone scale (EEZ). We highlighted pole-ward negative patterns with the best values in the Southern basin; Libya, Tunisia and Egypt in particular. Our spatial contextualization - through high resolution mapped outcomes - represents an effective and salient tool for stakeholders and policy makers, based on the translation of complex computational modelling results into easy-to-read maps. The highlighted patterns may provide scientific evidence for proactive capacity-building programmes at country level in the future
    • …
    corecore