109 research outputs found

    Pre- and early-postnatal nutrition modify gene and protein expressions of muscle energy metabolism markers and phospholipid fatty acid composition in a muscle type specific manner in sheep.

    Get PDF
    We previously reported that undernutrition in late fetal life reduced whole-body insulin sensitivity in adult sheep, irrespective of dietary exposure in early postnatal life. Skeletal muscle may play an important role in control of insulin action. We therefore studied a range of putative key muscle determinants of insulin signalling in two types of skeletal muscles (longissimus dorsi (LD) and biceps femoris (BF)) and in the cardiac muscle (ventriculus sinister cordis (VSC)) of sheep from the same experiment. Twin-bearing ewes were fed either 100% (NORM) or 50% (LOW) of their energy and protein requirements during the last trimester of gestation. From day-3 postpartum to 6-months of age (around puberty), twin offspring received a high-carbohydrate-high-fat (HCHF) or a moderate-conventional (CONV) diet, whereafter all males were slaughtered. Females were subsequently raised on a moderate diet and slaughtered at 2-years of age (young adults). The only long-term consequences of fetal undernutrition observed in adult offspring were lower expressions of the insulin responsive glucose transporter 4 (GLUT4) protein and peroxisome proliferator-activated receptor gamma, coactivator 1α (PGC1α) mRNA in BF, but increased PGC1α expression in VSC. Interestingly, the HCHF diet in early postnatal life was associated with somewhat paradoxically increased expressions in LD of a range of genes (but not proteins) related to glucose uptake, insulin signalling and fatty acid oxidation. Except for fatty acid oxidation genes, these changes persisted into adulthood. No persistent expression changes were observed in BF and VSC. The HCHF diet increased phospholipid ratios of n-6/n-3 polyunsaturated fatty acids in all muscles, even in adults fed identical diets for 1½ years. In conclusion, early postnatal, but not late gestation, nutrition had long-term consequences for a number of determinants of insulin action and metabolism in LD. Tissues other than muscle may account for reduced whole body insulin sensitivity in adult LOW sheep

    Global Impact of the COVID-19 Pandemic on Cerebral Venous Thrombosis and Mortality

    Get PDF
    Background and purpose: Recent studies suggested an increased incidence of cerebral venous thrombosis (CVT) during the coronavirus disease 2019 (COVID-19) pandemic. We evaluated the volume of CVT hospitalization and in-hospital mortality during the 1st year of the COVID-19 pandemic compared to the preceding year. Methods: We conducted a cross-sectional retrospective study of 171 stroke centers from 49 countries. We recorded COVID-19 admission volumes, CVT hospitalization, and CVT in-hospital mortality from January 1, 2019, to May 31, 2021. CVT diagnoses were identified by International Classification of Disease-10 (ICD-10) codes or stroke databases. We additionally sought to compare the same metrics in the first 5 months of 2021 compared to the corresponding months in 2019 and 2020 (ClinicalTrials.gov Identifier: NCT04934020). Results: There were 2,313 CVT admissions across the 1-year pre-pandemic (2019) and pandemic year (2020); no differences in CVT volume or CVT mortality were observed. During the first 5 months of 2021, there was an increase in CVT volumes compared to 2019 (27.5%; 95% confidence interval [CI], 24.2 to 32.0; P<0.0001) and 2020 (41.4%; 95% CI, 37.0 to 46.0; P<0.0001). A COVID-19 diagnosis was present in 7.6% (132/1,738) of CVT hospitalizations. CVT was present in 0.04% (103/292,080) of COVID-19 hospitalizations. During the first pandemic year, CVT mortality was higher in patients who were COVID positive compared to COVID negative patients (8/53 [15.0%] vs. 41/910 [4.5%], P=0.004). There was an increase in CVT mortality during the first 5 months of pandemic years 2020 and 2021 compared to the first 5 months of the pre-pandemic year 2019 (2019 vs. 2020: 2.26% vs. 4.74%, P=0.05; 2019 vs. 2021: 2.26% vs. 4.99%, P=0.03). In the first 5 months of 2021, there were 26 cases of vaccine-induced immune thrombotic thrombocytopenia (VITT), resulting in six deaths. Conclusions: During the 1st year of the COVID-19 pandemic, CVT hospitalization volume and CVT in-hospital mortality did not change compared to the prior year. COVID-19 diagnosis was associated with higher CVT in-hospital mortality. During the first 5 months of 2021, there was an increase in CVT hospitalization volume and increase in CVT-related mortality, partially attributable to VITT

    Call to Action: SARS-CoV-2 and CerebrovAscular DisordErs (CASCADE)

    Get PDF
    Background and purpose: The novel severe acute respiratory syndrome coronavirus 2 (SARS-Cov-2), now named coronavirus disease 2019 (COVID-19), may change the risk of stroke through an enhanced systemic inflammatory response, hypercoagulable state, and endothelial damage in the cerebrovascular system. Moreover, due to the current pandemic, some countries have prioritized health resources towards COVID-19 management, making it more challenging to appropriately care for other potentially disabling and fatal diseases such as stroke. The aim of this study is to identify and describe changes in stroke epidemiological trends before, during, and after the COVID-19 pandemic. Methods: This is an international, multicenter, hospital-based study on stroke incidence and outcomes during the COVID-19 pandemic. We will describe patterns in stroke management, stroke hospitalization rate, and stroke severity, subtype (ischemic/hemorrhagic), and outcomes (including in-hospital mortality) in 2020 during COVID-19 pandemic, comparing them with the corresponding data from 2018 and 2019, and subsequently 2021. We will also use an interrupted time series (ITS) analysis to assess the change in stroke hospitalization rates before, during, and after COVID-19, in each participating center. Conclusion: The proposed study will potentially enable us to better understand the changes in stroke care protocols, differential hospitalization rate, and severity of stroke, as it pertains to the COVID-19 pandemic. Ultimately, this will help guide clinical-based policies surrounding COVID-19 and other similar global pandemics to ensure that management of cerebrovascular comorbidity is appropriately prioritized during the global crisis. It will also guide public health guidelines for at-risk populations to reduce risks of complications from such comorbidities. © 202

    Global Impact of the COVID-19 Pandemic on Cerebral Venous Thrombosis and Mortality.

    Get PDF
    BACKGROUND AND PURPOSE: Recent studies suggested an increased incidence of cerebral venous thrombosis (CVT) during the coronavirus disease 2019 (COVID-19) pandemic. We evaluated the volume of CVT hospitalization and in-hospital mortality during the 1st year of the COVID-19 pandemic compared to the preceding year. METHODS: We conducted a cross-sectional retrospective study of 171 stroke centers from 49 countries. We recorded COVID-19 admission volumes, CVT hospitalization, and CVT in-hospital mortality from January 1, 2019, to May 31, 2021. CVT diagnoses were identified by International Classification of Disease-10 (ICD-10) codes or stroke databases. We additionally sought to compare the same metrics in the first 5 months of 2021 compared to the corresponding months in 2019 and 2020 (ClinicalTrials.gov Identifier: NCT04934020). RESULTS: There were 2,313 CVT admissions across the 1-year pre-pandemic (2019) and pandemic year (2020); no differences in CVT volume or CVT mortality were observed. During the first 5 months of 2021, there was an increase in CVT volumes compared to 2019 (27.5%; 95% confidence interval [CI], 24.2 to 32.0; P<0.0001) and 2020 (41.4%; 95% CI, 37.0 to 46.0; P<0.0001). A COVID-19 diagnosis was present in 7.6% (132/1,738) of CVT hospitalizations. CVT was present in 0.04% (103/292,080) of COVID-19 hospitalizations. During the first pandemic year, CVT mortality was higher in patients who were COVID positive compared to COVID negative patients (8/53 [15.0%] vs. 41/910 [4.5%], P=0.004). There was an increase in CVT mortality during the first 5 months of pandemic years 2020 and 2021 compared to the first 5 months of the pre-pandemic year 2019 (2019 vs. 2020: 2.26% vs. 4.74%, P=0.05; 2019 vs. 2021: 2.26% vs. 4.99%, P=0.03). In the first 5 months of 2021, there were 26 cases of vaccine-induced immune thrombotic thrombocytopenia (VITT), resulting in six deaths. CONCLUSIONS: During the 1st year of the COVID-19 pandemic, CVT hospitalization volume and CVT in-hospital mortality did not change compared to the prior year. COVID-19 diagnosis was associated with higher CVT in-hospital mortality. During the first 5 months of 2021, there was an increase in CVT hospitalization volume and increase in CVT-related mortality, partially attributable to VITT

    Technetium-99m chelator-free radiolabeling of specific glutamine tumor imaging nanoprobe: in vitro and in vivo evaluations

    No full text
    Seyedeh Masoumeh Ghoreishi,1,2 Ali Khalaj,1 Omid Sabzevari,3 Leila Badrzadeh,1 Pardis Mohammadzadeh,1,4 Seyed Shahaboddin Mousavi Motlagh,5 Ahmad Bitarafan-Rajabi,6 Mehdi Shafiee Ardestani1 1Department of Radiopharmacy, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran; 2Cancer Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran; 3Department of Toxicology and Pharmacology, Faculty of Pharmacy, Toxicology and Poisoning Research Centre, Tehran University of Medical Sciences, Tehran, Iran; 4Department of Genetics and Molecular Biology, Isfahan University of Medical Sciences, Isfahan, Iran; 5Biotechnology Department of Iranian Food and Drug Administration, Ministry of Health, Tehran, Iran; 6Echocardiography Research Center, Cardiovascular Interventional Research Center, Department of Nuclear Medicine, Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran Introduction: Nowadays, molecular imaging radiopharmaceuticals&rsquo;, nanoparticles&rsquo;, and/or small-molecule biomarkers&rsquo; applications are increasing rapidly worldwide. Thus, researchers focus on providing the novel, safe, and cost-effective ones. Materials and methods: In the present experiment, technetium-99m (99mTc)-labeled PEG-citrate dendrimer-G2 conjugated with glutamine (nanoconjugate) was designed and assessed as a novel tumor imaging probe both in vitro and in vivo. Nanoconjugate was synthesized and the synthesis was confirmed by Fourier transform infrared, proton nuclear magnetic resonance, liquid chromatography-mass spectrometry, dynamic light scattering, and static light scattering techniques. The toxicity was assessed by XTT and apoptosis and necrosis methods. Results: Radiochemical purity indicates that the anionic dendrimer has a very high potential to complex formation with 99mTc and is also very stable in the human serum in different times. Results from the imaging procedures showed potential ability of nanoconjugates to detect tumor site. Conclusion: Suitable features of the anionic dendrimer show that it is a promising agent to improve nanoradiopharmaceuticals. Keywords: biodegradable, biocompatible, dendrimer, glutamine, chelator free, radiolabelin

    Synthesis and characterization of novel 99mTc-DGC nano-complexes for improvement of heart diagnostic

    No full text
    In this research, early diagnosis of cardiovascular diseases can reduce their mortality and burden. In our study, we developed a new nano-agent, 99mTc-Dendrimer Glyco Conjugate (99mTc-DGC), and assessed its safety and capability for myocardial viability scan. To develop 99mTc-DGC, we first synthesized the dendrimer and then, glucose has been conjugated. Afterwards, we measured toxicity of the product on normal cells by XTT and apoptosis/necrosis methods. We compared the myocardial viability scan (measured by SPECT and dynamic planar imaging) in two rabbit models, with and without infarction. We also assessed the biodistribution of 99mTc-DGC in rats with no infarction. DGC synthesis was confirmed by Fourier transform infrared (FT-IR), proton nuclear magnetic resonance (1H NMR), liquid chromatography-mass spectrometry (LC-MS), dynamic light scattering (DLS) and static light scattering techniques (SLS). Then radiochemical purity (RCP) was done to present the stability and potential of DGC to complex formation with 99mTc. In vitro cytotoxicity showed nontoxic concentration up to 8 mg/mL. Single Photon Emission Computed Tomography (SPECT) and dynamic planar imaging clearly showed the accumulation of 99mTc-DGC in myocardial. Biodistribution result showed the 2.60 accumulation of 99mTc-DGC in myocardial after 2 h. Our findings indicated 99mTc-DGC to be safe and can accurately diagnose myocardial infarctions at early stages. Human studies to further assess such effects are critical. © 2020 Elsevier Inc

    Synthesis and characterization of novel 99mTc-DGC nano-complexes for improvement of heart diagnostic

    No full text
    In this research, early diagnosis of cardiovascular diseases can reduce their mortality and burden. In our study, we developed a new nano-agent, 99mTc-Dendrimer Glyco Conjugate (99mTc-DGC), and assessed its safety and capability for myocardial viability scan. To develop 99mTc-DGC, we first synthesized the dendrimer and then, glucose has been conjugated. Afterwards, we measured toxicity of the product on normal cells by XTT and apoptosis/necrosis methods. We compared the myocardial viability scan (measured by SPECT and dynamic planar imaging) in two rabbit models, with and without infarction. We also assessed the biodistribution of 99mTc-DGC in rats with no infarction. DGC synthesis was confirmed by Fourier transform infrared (FT-IR), proton nuclear magnetic resonance (1H NMR), liquid chromatography-mass spectrometry (LC-MS), dynamic light scattering (DLS) and static light scattering techniques (SLS). Then radiochemical purity (RCP) was done to present the stability and potential of DGC to complex formation with 99mTc. In vitro cytotoxicity showed nontoxic concentration up to 8 mg/mL. Single Photon Emission Computed Tomography (SPECT) and dynamic planar imaging clearly showed the accumulation of 99mTc-DGC in myocardial. Biodistribution result showed the 2.60% accumulation of 99mTc-DGC in myocardial after 2 h. Our findings indicated 99mTc-DGC to be safe and can accurately diagnose myocardial infarctions at early stages. Human studies to further assess such effects are critical
    corecore