28 research outputs found

    Denatured Whey Protein Powder as a New Matrix Excipient: Design and Evaluation of Mucoadhesive Tablets for Sustained Drug Release Applications

    No full text
    International audiencePurpose In earlier study, we proposed denatured whey protein (DWP) powder obtained by atomization as a new excipient to promote oral drug delivery. In this work, we evaluate the possibility to formulate tablets based on DWP powders and to characterize their role as a matrix mucoadhesive excipient. Methods Tablets containing increased amount of DWP (10 to 30%) were produced by direct compression after mixing with theophylline, microcrystalline cellulose, Aerosil® and magnesium stearate. Dissolution behaviors of obtained tablets were evaluated in different USP buffers (pH 1.2, 4.5 and 6.8) and in simulated gastric and intestinal fluids and mechanisms analyzed by multiple mathematical models. Swelling, erosion and mucoadhesion were also evaluated. Finally, release and absorption were studied in the artificial digestive system (TIM 1). Results Tablets based on DWP and containing 300 mg of theophylline were obtained by direct compression. These tablets exhibited controlled release driven by diffusion starting from 15% DWP content whatever the pH studied. They also showed a great extent of swelling and water uptake while matrix weight loss was limited. Addition of enzymes accelerated drug release which became governed by erosion according to Peppas model. Conclusions The present study shows thatDWP powders can be successfully used as a pharmaceutical excipient, and in particular as amatrix mucoadhesive controlled release tablets

    Atomization of denatured whey proteins as a novel and simple way to improve oral drug delivery system properties

    No full text
    International audienceIn the sphere of drug delivery, denatured whey protein (DWP) has in recent times gained press. However, to date, no scalable and affordable dosage form has been developed. The objective of our study was to evaluate the potential use of spray-dried DWP as a ready to use excipient for oral drug delivery. Therefore, solid state, FTIR spectra and wettability were studied. Dissolution, mucoadhesion and the effect on paracellular permeability were also evaluated. The spray-dried DWP particles were spherical with 4μm mean diameter. Further, relative to native WP, the spray-dried DWP particles bore reduced wettability, and their structure was characterized by the exposure of a high amount of free thiol and by the formation of intermolecular β-sheets. The DWP powders were mucoadhesive, enzymatic inhibitors, biocompatible and they induced the opening of tight junctions. Our study shows great potential for the use of spray-drying as a technique to modify the dissolution rate of drugs and enhance the oral bioavailability of molecules. That is, the use of spray drying as a single step ready to use DWP excipient

    Nutritional approach to restore impaired intestinal barrier function and inflammatory after inflammation induction in cells and mice models

    No full text
    International audiencePurpose : Inflammatory bowel disease (IBD) is characterized by inflammation and permeability increased of the intestinal wall leading to diarrhea, abdominal pain, weight loss, eg. Various treatments nowadays allow patients to treat symptomatic attacks and to a lesser extent, to space them out. These treatments are effective but remain burdensome for the patients with numerous undesirable effects and considerably alter their quality of life. Our new vegetable extract (NE) based on natural anti-inflammatory polymers has been developed as nutritional formulation in order to improve benefit/risk ratio, and thus reduce the use of current treatments to preserve the quality of life and mobility of IBD patients. Aims of this work were 1/ to assess the toxicity and inflammatory response of NE (pathway and responsible composition) on cells culture and mice models and 2/ to determine the implication of NE in intestinal permeability and membrane integrity.NE composition has been studied (flavonoids, vitamin C, polyphenol…) by chemical dosages and evaluated on cellular metabolism in vitro. The different types of inflammatory mediators (inflammatory cytokines) were determined by ELISA assay, and the treatment action on NF-kB pathway was determined after induction of inflammation by lipopolysaccharides (LPS) on Raw 264.7 cells by western blot. The proof of concept was evaluated in vivo on Fvb/n mice models treated with DSS representative of IBD pathologies. Secondly, the modification of permeability (in vitro and ex vivo) in IBD context was evaluated with NE treatment.The efficacy of the in vitro and in vivo treatments shows a decrease in inflammatory factors and inhibition of NF-kB pathway as well as a reduction of the digestive permeability system, particularly at the colonic level. The formulation of a nutritional vector based on natural excipient NE could be an effective therapeutic solution to treat IBD

    Molecular and biopharmaceutical investigation of alginate–inulin synbiotic coencapsulation of probiotic to target the colon

    No full text
    International audienceColon targeting, as a site-specific delivery for oral formulation, remains a major challenge, especially for sensitive bioactive components such as therapeutic forms of phages, live attenuated virus and prebiotics-probiotics association. Synbiotics could be used to protect encapsulated probiotics during the gastrointestinal tract and control their release in the colon. To achieve these goals, effective prebiotics, such as inulin, could be combined with alginate - the most exploited polymer used for probiotic encapsulation - in the form of beads. This work aimed to study the biopharmaceutical behaviour of alginate beads (A) and inulin-alginate beads of different inulin concentrations (5 or 20%) in 2% alginate (AI5, AI20). Beads were loaded with three probiotic strains (Pediococcus acidilactici Ul5, Lactobacillus reuteri and Lactobacillus salivarius). Dissolution of beads was studied by USP4 under conditions simulating the gastrointestinal condition. The survival rates of the bacterial strains were measured by a specific qPCR bacterial count. Mucoadhesiveness of beads was studied by an ex vivo method using intestinal mucosa. To understand the behaviour of each formulation, the ultrastructure of the polymeric network was studied using scanning electron microscopy (SEM). Molecular interactions between alginate and inulin were studied by Fourier transform infra-red spectroscopy (FTIR). Dissolution results suggested that the presence of inulin in beads provided more protection for the tested bacterial strains against the acidic pH. AI5 was the most effective formulation to deliver probiotics to the colon simulation conditions. FTIR and SEM investigations explained the differences in behaviour of each formula. The developed symbiotic form provided a promising matrix for the development of colonic controlled release systems

    Organogel Nanoparticles as a New Way to Improve Oral Bioavailability of Poorly Soluble Compounds

    No full text
    International audiencePurposeThe aim of the study was to evaluate organogel nanoparticles as a lipophilic vehicle to increase the oral bioavailability of poorly soluble compounds. Efavirenz (EFV), a Biopharmaceutical Classification System (BCS) Class II, was used as drug model.MethodsOrganogel nanoparticles loaded with EFV were formulated with sunflower oil, 12-hydroxystearic acid (HSA) and polyvinyl alcohol (PVA). Various parameters have been investigated in the current study such as (i) the release profile of organogel assessed by USP 4 cell flow dialysis, (ii) the impact of organogel on intestinal absorption, using Caco-2 cells as in vitro model and jejunum segments as ex vivo assay and (iii) the bioavailability of organogel following oral pharmacokinetic study.Results250–300 nm spherical particles with a final concentration of 4.75 mg/mL drug loading were obtained, corresponding to a thousand fold increase in EFV solubility, combined to a very high encapsulation efficiency (>99.8%). Due to rapid diffusion, drug was immediately released from the nanoparticles. The biopharmaceutical evaluation on ex vivo jejunum segments demonstrated an increased absorption of EFV from organogel nanoparticles compare to a native EFV suspension. In vitro assays combining Caco-2 cell cultures with TEM and confocal microscopy demonstrated passive diffusion, while paracellular integrity and endocytosis activity remain expelled. Oral pharmacokinetics of EFV organogel nanoparticles improve oral bioavailability (Fr: 249%) and quick absorption compared to EFV suspension.ConclusionOrganogel nanoparticles increase the bioavailability of BCS Class II drugs. The main phenomena is simply oil transfer from the gelled particles through the cell membrane

    Micelle dynamic simulation and physicochemical characterization of biorelevant media to reflect gastrointestinal environment in fasted and fed states

    No full text
    International audienceThe characterization of biorelevant media simulating the upper part of the gastrointestinal tract in the fasted and fed states was investigated by classical determination of physicochemical parameters such as pH, osmolality, surface tension and results were compared to in vivo physiological data. Incorporation of fatty material, in order to better simulate the influence of high fat meal was also performed. Stability and characterization of this medium was studied and compared to classical FeSSIF. Micelle characterization and computer dynamic simulation were performed in order to understand the interaction between lecithin and taurocholate and possible interactions between mixed micelle and drugs. The addition of NaTc, lecithin, and/or fatty materials has no influence on pH and osmolality, whereas the presence of fatty material modifies the surface tension. Values of FaSSIF and FeSSIF are in accordance with in vivo parameters and the presence of micelles can simulate the gastrointestinal environment. Modelization of micelles by computer simulation led to a model of mixed micelles in which structures of NaTc interact either by their hydrophilic or hydrophobic phase to give a bilayer stable model in which the lecithin molecule can insert its long carbon chain. The micelle structure is stable and can enhance dissolution of hydrophobic molecules by hydrophobic interaction with the numerous hydrophobic spaces available in the multilayer hydrophilic/hydrophobic layer

    Retrograded starch/pectin coated gellan gum-microparticles for oral administration of insulin: A technological platform for protection against enzymatic degradation and improvement of intestinal permeability

    No full text
    International audienceGellan gum microparticles coated with colon-specific films based on retrograded starch and pectin was developed for enhancing the oral release of insulin (INS). The system developed promoted an impressive protection of INS (80%) after 120 min of incubation with trypsin and alpha-chymotrypsin, while only 3% of free INS remained intact after the same time, possibility due to the calcium chelating activity of the polymers in inhibiting the proteolytic activity. In vitro INS release in media simulating the gastrointestinal portions revealed a pH-dependent behavior, as well as the significance of the coating in lowering the release rates in relation to their counterparts. The permeability of INS on Caco-2 cells monolayers and excised rat intestine were significantly improved, mainly due to the influence of the anionic polymers on tight junctions opening, along with the excellent mucoadhesive properties of the gellan gum. All these features together contributed greatly to the hypoglycemic effect observed after the oral administration of the INS-loaded MP in diabetic rats, with reduction of up to 51% of blood glucose levels. The important findings of this work should contribute to the advances about the search of alternatives for oral administration of INS

    Fabrication of Acrylonitrile-Butadiene-Styrene Nanostructures with Anodic Alumina Oxide Templates, Characterization and Biofilm Development Test for Staphylococcus epidermidis.

    No full text
    Medical devices can be contaminated by microbial biofilm which causes nosocomial infections. One of the strategies for the prevention of such microbial adhesion is to modify the biomaterials by creating micro or nanofeatures on their surface. This study aimed (1) to nanostructure acrylonitrile-butadiene-styrene (ABS), a polymer composing connectors in perfusion devices, using Anodic Alumina Oxide templates, and to control the reproducibility of this process; (2) to characterize the physico-chemical properties of the nanostructured surfaces such as wettability using captive-bubble contact angle measurement technique; (3) to test the impact of nanostructures on Staphylococcus epidermidis biofilm development. Fabrication of Anodic Alumina Oxide molds was realized by double anodization in oxalic acid. This process was reproducible. The obtained molds present hexagonally arranged 50 nm diameter pores, with a 100 nm interpore distance and a length of 100 nm. Acrylonitrile-butadiene-styrene nanostructures were successfully prepared using a polymer solution and two melt wetting methods. For all methods, the nanopicots were obtained but inside each sample their length was different. One method was selected essentially for industrial purposes and for better reproducibility results. The flat ABS surface presents a slightly hydrophilic character, which remains roughly unchanged after nanostructuration, the increasing apparent wettability observed in that case being explained by roughness effects. Also, the nanostructuration of the polymer surface does not induce any significant effect on Staphylococcus epidermidis adhesion
    corecore