881 research outputs found

    Ab initio data-analytics study of carbon-dioxide activation on semiconductor oxide surfaces

    Get PDF
    The excessive emissions of carbon dioxide (CO2) into the atmosphere threaten to shift the CO2 cycle planet-wide and induce unpredictable climate changes. Using artificial intelligence (AI) trained on high-throughput first principles based data for a broad family of oxides, we develop a strategy for a rational design of catalytic materials for converting CO2 to fuels and other useful chemicals. We demonstrate that an electron transfer to the π-antibonding orbital of the adsorbed molecule and the associated bending of the initially linear molecule, previously proposed as the indicator of activation, are insufficient to account for the good catalytic performance of experimentally characterized oxide surfaces. Instead, our AI model identifies the common feature of these surfaces in the binding of a molecular O atom to a surface cation, which results in a strong elongation and therefore weakening of one molecular C-O bond. This finding suggests using the C-O bond elongation as an indicator of CO2 activation. Based on these findings, we propose a set of new promising oxide-based catalysts for CO2 conversion, and a recipe to find more

    Recent advances in the SISSO method and their implementation in the SISSO++ code

    Full text link
    Accurate and explainable artificial-intelligence (AI) models are promising tools for the acceleration of the discovery of new materials, ore new applications for existing materials. Recently, symbolic regression has become an increasingly popular tool for explainable AI because it yields models that are relatively simple analytical descriptions of target properties. Due to its deterministic nature, the sure-independence screening and sparsifying operator (SISSO) method is a particularly promising approach for this application. Here we describe the new advancements of the SISSO algorithm, as implemented into SISSO++, a C++ code with Python bindings. We introduce a new representation of the mathematical expressions found by SISSO. This is a first step towards introducing ``grammar'' rules into the feature creation step. Importantly, by introducing a controlled non-linear optimization to the feature creation step we expand the range of possible descriptors found by the methodology. Finally, we introduce refinements to the solver algorithms for both regression and classification, that drastically increase the reliability and efficiency of SISSO. For all of these improvements to the basic SISSO algorithm, we not only illustrate their potential impact, but also fully detail how they operate both mathematically and computationally.Comment: 10 pages, 7 figures, 4 table

    Evidence of orbital reconstruction at interfaces in La0.67Sr0.33MnO3 films

    Full text link
    Electronic properties of transition metal oxides at interfaces are influenced by strain, electric polarization and oxygen diffusion. Linear dichroism (LD) x-ray absorption, diffraction, transport and magnetization on thin La0.7Sr0.3MnO3 films, allow identification of a peculiar universal interface effect. We report the LD signature of preferential 3d-eg(3z2-r2) occupation at the interface, suppressing the double exchange mechanism. This surface orbital reconstruction is opposite of that favored by residual strain and independent of dipolar fields, chemical nature of the substrate and capping.Comment: 13 pages, 5 figure

    Multiple double-exchange mechanism by Mn2+^{2+}-doping in manganite compounds

    Full text link
    Double-exchange mechanisms in RE1x_{1-x}AEx_{x}MnO3_{3} manganites (where RE is a trivalent rare-earth ion and AE is a divalent alkali-earth ion) relies on the strong exchange interaction between two Mn3+^{3+} and Mn4+^{4+} ions through interfiling oxygen 2p states. Nevertheless, the role of RE and AE ions has ever been considered "silent" with respect to the DE conducting mechanisms. Here we show that a new path for DE-mechanism is indeed possible by partially replacing the RE-AE elements by Mn2+^{2+}-ions, in La-deficient Lax_{x}MnO3δ_{3-\delta} thin films. X-ray absorption spectroscopy demonstrated the relevant presence of Mn2+^{2+} ions, which is unambiguously proved to be substituted at La-site by Resonant Inelastic X-ray Scattering. Mn2+^{2+} is proved to be directly correlated to the enhanced magneto-transport properties because of an additional hopping mechanism trough interfiling Mn2+^{2+}-ions, theoretically confirmed by calculations within the effective single band model. The very idea to use Mn2+^{2+} both as a doping element and an ions electronically involved in the conduction mechanism, has never been foreseen, revealing a new phenomena in transport properties of manganites. More important, such a strategy might be also pursed in other strongly correlated materials.Comment: 6 pages, 5 figure

    Dynamical charge density fluctuations pervading the phase diagram of a Cu-based high-Tc superconductor

    Full text link
    Charge density waves are a common occurrence in all families of high critical temperature superconducting cuprates. Although consistently observed in the underdoped region of the phase diagram and at relatively low temperatures, it is still unclear to what extent they influence the unusual properties of these systems. Using resonant x-ray scattering we carefully determined the temperature dependence of charge density modulations in (Y,Nd)Ba2_2Cu3_3O7δ_{7-{\delta}} for three doping levels. We discovered short-range dynamical charge density fluctuations besides the previously known quasi-critical charge density waves. They persist up to well above the pseudogap temperature T*, are characterized by energies of few meV and pervade a large area of the phase diagram, so that they can play a key role in shaping the peculiar normal-state properties of cuprates.Comment: 34 pages, 4 figures, 11 supplementary figure

    Evidence for core-hole-mediated inelastic x-ray scattering from metallic Fe1.087_{1.087}Te

    Get PDF
    We present a detailed analysis of resonant inelastic scattering (RIXS) from Fe1.087_{1.087}Te with unprecedented energy resolution. In contrast to the sharp peaks typically seen in insulating systems at the transition metal L3L_3 edge, we observe spectra which show different characteristic features. For low energy transfer, we experimentally observe theoretically predicted many-body effects of resonant Raman scattering from a non-interacting gas of fermions. Furthermore, we find that limitations to this many-body electron-only theory are realized at high Raman shift, where an exponential lineshape reveals an energy scale not present in these considerations. This regime, identified as emission, requires considerations of lattice degrees of freedom to understand the lineshape. We argue that both observations are intrinsic general features of many-body physics of metals.Comment: 4 pages, 4 figure

    Analysis of Topological Transitions in Two-dimensional Materials by Compressed Sensing

    No full text
    Quantum spin-Hall insulators (QSHIs), i.e., two-dimensional topological insulators (TIs) with a symmetry-protected band inversion, have attracted considerable scientific interest in recent years. In this work, we have computed the topological Z2 invariant for 220 functionalized honeycomb lattices that are isoelectronic to functionalized graphene. Besides confirming the TI character of well-known materials such as functionalized stanene, our study identifies 45 yet unreported QSHIs. We applied a compressed-sensing approach to identify a physically meaningful descriptor for the Z2 invariant that only depends on the properties of the material's constituent atoms. This enables us to draw a map of materials, in which metals, trivial insulators, and QSHI form distinct regions. This analysis yields fundamental insights in the mechanisms driving topological transitions. The transferability of the identified model is explicitly demonstrated for an additional set of honeycomb lattices with different functionalizations that are not part of the original set of 220 graphene-type materials used to identify the descriptor. In this class, we predict 74 more novel QSHIs that have not been reported in literature yet

    Dispersive charge density wave excitations and temperature dependent commensuration in Bi2Sr2CaCu2O8+{\delta}

    Full text link
    Experimental evidence on high-Tc cuprates reveals ubiquitous charge density wave (CDW) modulations, which coexist with superconductivity. Although the CDW had been predicted by theory, important questions remain about the extent to which the CDW influences lattice and charge degrees of freedom and its characteristics as functions of doping and temperature. These questions are intimately connected to the origin of the CDW and its relation to the mysterious cuprate pseudogap. Here, we use ultrahigh resolution resonant inelastic x-ray scattering (RIXS) to reveal new CDW character in underdoped Bi2Sr2CaCu2O8+{\delta} (Bi2212). At low temperature, we observe dispersive excitations from an incommensurate CDW that induces anomalously enhanced phonon intensity, unseen using other techniques. Near the pseudogap temperature T*, the CDW persists, but the associated excitations significantly weaken and the CDW wavevector shifts, becoming nearly commensurate with a periodicity of four lattice constants. The dispersive CDW excitations, phonon anomaly, and temperature dependent commensuration provide a comprehensive momentum space picture of complex CDW behavior and point to a closer relationship with the pseudogap state

    Dispersion, damping, and intensity of spin excitations in the single-layer (Bi,Pb)2_{2}(Sr,La)2_{2}CuO6+δ_{6+\delta} cuprate superconductor family

    Full text link
    Using Cu-L3L_3 edge resonant inelastic x-ray scattering (RIXS) we measured the dispersion and damping of spin excitations (magnons and paramagnons) in the high-TcT_\mathrm{c} superconductor (Bi,Pb)2_{2}(Sr,La)2_{2}CuO6+δ_{6+\delta} (Bi2201), for a large doping range across the phase diagram (0.03p0.210.03\lesssim p\lesssim0.21). Selected measurements with full polarization analysis unambiguously demonstrate the spin-flip character of these excitations, even in the overdoped sample. We find that the undamped frequencies increase slightly with doping for all accessible momenta, while the damping grows rapidly, faster in the (0,0)\rightarrow(0.5,0.5) nodal direction than in the (0,0)\rightarrow(0.5,0) antinodal direction. We compare the experimental results to numerically exact determinant quantum Monte Carlo (DQMC) calculations that provide the spin dynamical structure factor S(Q,ω)S(\textbf{Q},\omega) of the three-band Hubbard model. The theory reproduces well the momentum and doping dependence of the dispersions and spectral weights of magnetic excitations. These results provide compelling evidence that paramagnons, although increasingly damped, persist across the superconducting dome of the cuprate phase diagram; this implies that long range antiferromagnetic correlations are quickly washed away, while short range magnetic interactions are little affected by doping.Comment: 11 pages, 9 figure

    High-energy spin and charge excitations in electron-doped copper oxide superconductors

    Get PDF
    The evolution of electronic (spin and charge) excitations upon carrier doping is an extremely important issue in superconducting layered cuprates and the knowledge of its asymmetry between electron- and hole-dopings is still fragmentary. Here we combine x-ray and neutron inelastic scattering measurements to track the doping dependence of both spin and charge excitations in electron-doped materials. Copper L3 resonant inelastic x-ray scattering spectra show that magnetic excitations shift to higher energy upon doping. Their dispersion becomes steeper near the magnetic zone center and deeply mix with charge excitations, indicating that electrons acquire a highly itinerant character in the doped metallic state. Moreover, above the magnetic excitations, an additional dispersing feature is observed near the {\Gamma}-point, and we ascribe it to particle-hole charge excitations. These properties are in stark contrast with the more localized spin-excitations (paramagnons) recently observed in hole-doped compounds even at high doping-levels.Comment: 20 page
    corecore