130 research outputs found

    Quantum to Classical Transition from the Cosmic Background Radiation

    Get PDF
    We have revisited the Ghirardi-Rimini-Weber-Pearle (GRWP) approach for continuous dynamical evolution of the state vector for a macroscopic object. Our main concern is to recover the decoupling of the state vector dynamics for the center-of-mass (CM) and internal motion, as in the GRWP model, but within the framework of the standard cosmology. In this connection we have taken the opposite direction of the GRWP argument, that the cosmic background radiation (CBR) has originated from a fundamental stochastic hitting process. We assume the CBR as a clue of the Big Bang, playing a main role in the decoupling of the state vector dynamics of the CM and internal motion. In our model, instead of describing a continuous spontaneous localization (CSL) of a system of massive particles as proposed by Ghirardi, Pearle and Rimini, the It\^{o} stochastic equation accounts for the intervention of the CBR on the system of particles. Essentially, this approach leads to a pre-master equation for both the CBR and particles degrees of freedom. The violation of the principle of energy conservation characteristic of the CSL model is avoided as well as the additional assumption on the size of the GRWP's localization width necessary to reach the decoupling between the collective and internal motions. Moreover, realistic estimation for the decoherence time, exhibiting an interesting dependence on the CBR temperature, is obtained. From the formula for the decoherence time it is possible to analyze the transition from micro to macro dynamics in both the early hot Universe and the nowadays cold one. The entropy of the system under decoherence is analyzed and the emergent `pointer basis' is discussed. In spite of not having imposed a privileged basis, in our model the position still emerges as the preferred observable as in the CSL model.Comment: 14 pages, no figure. To appear in Phys. Rev.

    On the Consequences of Retaining the General Validity of Locality in Physical Theory

    Full text link
    The empirical validity of the locality (LOC) principle of relativity is used to argue in favour of a local hidden variable theory (HVT) for individual quantum processes. It is shown that such a HVT may reproduce the statistical predictions of quantum mechanics (QM), provided the reproducibility of initial hidden variable states is limited. This means that in a HVT limits should be set to the validity of the notion of counterfactual definiteness (CFD). This is supported by the empirical evidence that past, present, and future are basically distinct. Our argumentation is contrasted with a recent one by Stapp resulting in the opposite conclusion, i.e. nonlocality or the existence of faster-than-light influences. We argue that Stapp's argumentation still depends in an implicit, but crucial, way on both the notions of hidden variables and of CFD. In addition, some implications of our results for the debate between Bohr and Einstein, Podolsky and Rosen are discussed.Comment: revtex, 11 page

    Diagnostic and Therapeutic Pathway of Advanced Ovarian Cancer with Peritoneal Metastases

    Get PDF
    Over two thirds of ovarian cancer patients present with advanced stage disease at the time of diagnosis. In this scenario, standard treatment includes a combination of cytoreductive surgery and carboplatinum–paclitaxel-based chemotherapy. Despite the survival advantage of patients treated with upfront cytoreductive surgery compared to women undergoing neo-adjuvant chemotherapy (NACT) and interval debulking surgery (IDS) due to high tumor load or poor performance status has been demonstrated by multiple studies, this topic is still a matter of debate. As a consequence, selecting the adequate treatment through an appropriate diagnostic pathway represents a crucial step. Aiming to assess the likelihood of leaving no residual disease at the end of surgery, the role of the CT scan as a predictor of cytoreductive outcomes has shown controversial results. Similarly, CA 125 level as an expression of tumor load demonstrated limited applicability. On the contrary, laparoscopic assessment of disease distribution through a validated scoring system was able to identify, with the highest specificity, patients undergoing suboptimal cytoreduction and therefore best suitable for NACT-IDS. Against this background, with this article, we aim to provide a comprehensive review of available evidence on the diagnostic and treatment pathways of advanced ovarian cancer

    Quantum mechanical effect of path-polarization contextuality for a single photon

    Full text link
    Using measurements pertaining to a suitable Mach-Zehnder(MZ) type setup, a curious quantum mechanical effect of contextuality between the path and the polarization degrees of freedom of a polarized photon is demonstrated, without using any notion of realism or hidden variables - an effect that holds good for the product as well as the entangled states. This form of experimental context-dependence is manifested in a way such that at \emph{either} of the two exit channels of the MZ setup used, the empirically verifiable \emph{subensemble} statistical properties obtained by an arbitrary polarization measurement depend upon the choice of a commuting(comeasurable) path observable, while this effect disappears for the \emph{whole ensemble} of photons emerging from the two exit channels of the MZ setup.Comment: To be published in IJT

    The Boom of cohabitation in Colombia and in the Andean Region : social and spatial patterns

    Get PDF
    In this chapter we use census microdata to document the rise in cohabitation in Colombia and in the Andean countries of Ecuador, Bolivia, Perú and Venezuela over the last four decades. We use multilevel logistic regression models to examine the effect of individual and contextual variables on cohabitation. We show the individual and contextual effects of social stratification, ethnicity and religion on cohabitation. Cohabitation levels follow a negative gradient with education and vary according to ethnic background. The Bolivian, Ecuadorian and Peruvian censuses reveal that the two largest ethnic groups (i.e. the Quechua and Aymara) have, controlling for other characteristics, the lowest incidence of cohabitation. By contrast, Afro-American populations show the highest levels of cohabitation. The joint use of individual- and contextual-level explanatory variables is sufficient to account for the majority of Bolivia's internal diversity regarding cohabitation, but not sufficient to account for the internal diversity identified in Colombia, Peru or Ecuador. Even after controls, residence in the Andes mountain areas continues to be a factor associated with lower levels of cohabitation. This invites further investigations on how the institutionalization of marriage occurred in the Andes

    Towards a realistic interpretation of quantum mechanics providing a model of the physical world

    Full text link
    It is argued that a realistic interpretation of quantum mechanics is possible and useful. Current interpretations, from Copenhagen to many worlds are critically revisited. The difficulties for intuitive models of quantum physics are pointed out and possible solutions proposed. In particular the existence of discrete states, the quantum jumps, the alleged lack of objective properties, measurement theory, the probabilistic character of quantum physics, the wave-particle du- ality and the Bell inequalities are analyzed. The sketch of a realistic picture of the quantum world is presented. It rests upon the assump- tion that quantum mechanics is a stochastic theory whose randomness derives from the existence of vacuum fields. They correspond to the vacuum fluctuations of quantum field theory, but taken as real rather than virtual.Comment: 43 pages, paper throughout revised and somewhat enlarged, sections on the Bell inequalities and on the sketch of a picture of the quantum world rewritten, new references adde

    Quartic quantum theory: an extension of the standard quantum mechanics

    Full text link
    We propose an extended quantum theory, in which the number K of parameters necessary to characterize a quantum state behaves as fourth power of the number N of distinguishable states. As the simplex of classical N-point probability distributions can be embedded inside a higher dimensional convex body of mixed quantum states, one can further increase the dimensionality constructing the set of extended quantum states. The embedding proposed corresponds to an assumption that the physical system described in N dimensional Hilbert space is coupled with an auxiliary subsystem of the same dimensionality. The extended theory works for simple quantum systems and is shown to be a non-trivial generalisation of the standard quantum theory for which K=N^2. Imposing certain restrictions on initial conditions and dynamics allowed in the quartic theory one obtains quadratic theory as a special case. By imposing even stronger constraints one arrives at the classical theory, for which K=N.Comment: 30 pages in latex with 6 figures included; ver.2: several improvements, new references adde

    Causarum Investigatio and the Two Bell's Theorems of John Bell

    Full text link
    "Bell's theorem" can refer to two different theorems that John Bell proved, the first in 1964 and the second in 1976. His 1964 theorem is the incompatibility of quantum phenomena with the joint assumptions of Locality and Predetermination. His 1976 theorem is their incompatibility with the single property of Local Causality. This is contrary to Bell's own later assertions, that his 1964 theorem began with the assumption of Local Causality, even if not by that name. Although the two Bell's theorems are logically equivalent, their assumptions are not. Hence, the earlier and later theorems suggest quite different conclusions, embraced by operationalists and realists, respectively. The key issue is whether Locality or Local Causality is the appropriate notion emanating from Relativistic Causality, and this rests on one's basic notion of causation. For operationalists the appropriate notion is what is here called the Principle of Agent-Causation, while for realists it is Reichenbach's Principle of common cause. By breaking down the latter into even more basic Postulates, it is possible to obtain a version of Bell's theorem in which each camp could reject one assumption, happy that the remaining assumptions reflect its weltanschauung. Formulating Bell's theorem in terms of causation is fruitful not just for attempting to reconcile the two camps, but also for better describing the ontology of different quantum interpretations and for more deeply understanding the implications of Bell's marvellous work.Comment: 24 pages. Prepared for proceedings of the "Quantum [Un]speakables II" conference (Vienna, 2014), to be published by Springe

    Quantum Locality

    Full text link
    It is argued that while quantum mechanics contains nonlocal or entangled states, the instantaneous or nonlocal influences sometimes thought to be present due to violations of Bell inequalities in fact arise from mistaken attempts to apply classical concepts and introduce probabilities in a manner inconsistent with the Hilbert space structure of standard quantum mechanics. Instead, Einstein locality is a valid quantum principle: objective properties of individual quantum systems do not change when something is done to another noninteracting system. There is no reason to suspect any conflict between quantum theory and special relativity.Comment: Introduction has been revised, references added, minor corrections elsewhere. To appear in Foundations of Physic
    corecore