37 research outputs found

    Functional shift with maintained regenerative potential following portal vein ligation

    Get PDF
    Selective portal vein ligation (PVL) allows the two-stage surgical resection of primarily unresectable liver tumours by generating the atrophy and hypertrophy of portally ligated (LL) and non-ligated lobes (NLL), respectively. To evaluate critically important underlying functional alterations, present study characterised in vitro and vivo liver function in male Wistar rats (n = 106; 210-250 g) before, and 24/48/72/168/336 h after PVL. Lobe weights and volumes by magnetic resonance imaging confirmed the atrophy-hypertrophy complex. Proper expression and localization of key liver transporters (Ntcp, Bsep) and tight junction protein ZO-1 in isolated hepatocytes demonstrated constantly present viable and well-polarised cells in both lobes. In vitro taurocholate and bilirubin transport, as well as in vivo immunohistochemical Ntcp and Mrp2 expressions were bilaterally temporarily diminished, whereas LL and NLL structural acinar changes were divergent. In vivo bile and bilirubin-glucuronide excretion mirrored macroscopic changes, whereas serum bilirubin levels remained unaffected. In vivo functional imaging (indocyanine-green clearance test; (99mTc)-mebrofenin hepatobiliary scintigraphy; confocal laser endomicroscopy) indicated transitionally reduced global liver uptake and -excretion. While LL functional involution was permanent, NLL uptake and excretory functions recovered excessively. Following PVL, functioning cells remain even in LL. Despite extensive bilateral morpho-functional changes, NLL functional increment restores temporary declined transport functions, emphasising liver functional assessment

    Lineage-related susceptibility of human hemopoietic cell lines to apoptosis.

    No full text
    Apoptosis plays a fundamental role in shaping normal hematopoiesis. We have investigated the relationship existing between susceptibility to apoptosis and lineage commitment in hemopoietic cells. The presence and degree of apoptosis were investigated in myeloid (HL-60 and K562), T (Jurkat and MOLT-4), and B (CESS and Raji) lymphoid cell lines by using a variety of techniques-transmission electron and light microscopy, flow cytometry and DNA gel electrophoresis. The major achievement of this study is that hematopoietic cells respond to different chemical (staurosporin, tiazofurin, camptothecin) and physical (hyperthermia or hypothermia) stimuli by apoptosis in a lineage-related way. Moreover, with respect to the methods used to detect apoptosis, a strong correlation was observed between the presence of the hypodiploid peak determined by flow cytometry and the DNA laddering evaluated by gel electrophoresis, but both techniques failed to demonstrate the presence of apoptosis in some cases. We conclude that cells of different hematopoietic lineages mostly show a lineage-related behaviour in their apoptotic response to different stimuli, suggesting that the lineage commitment and the stage of differentiation can confer different sensitivities to specific apoptotic stimuli. Moreover, morphological techniques still represent the most reliable approach to detect apoptosis in hemopoietic cells
    corecore