1,242 research outputs found

    Analysis of two-dimensional incompressible flow past airfoils using unsteady Navier-Stokes equations

    Get PDF
    The conservative form of the unsteady Navier-Stokes equations in terms of vorticity and stream function in generalized curvilinear coordinates are used to analyze the flow structure of steady separation and unsteady flow with massive separation. The numerical method solves the discretized equations using an ADI-BGE method. The method is applied to a symmetric 12 percent thick Joukowski airfoil. A conformal clustered grid is generated; several 1-D stretching transformations are used to obtain a grid that attempts to resolve many of the multiple scales of the unsteady flow with massive separation, while maintaining the transformation metrics to be smooth and continuous in the entire flow field. Detailed numerical results are obtained for three flow configurations (1) Re = 1000, alpha = 5 deg., (2) Re =1000, alpha = 15 deg., (3) Re = 10,000, alpha = 5 deg. No artificial dissipation was added; however, lack of a fine grid in the normal direction has presently led to results which are considered qualitative, especially for case (3)

    Simulation of self-induced unsteady motion in the near wake of a Joukowski airfoil

    Get PDF
    The unsteady Navier-Stokes analysis is shown to be capable of analyzing the massively separated, persistently unsteady flow in the post-stall regime of a Joukowski airfoil for an angle of attack as high as 53 degrees. The analysis has provided the detailed flow structure, showing the complex vortex interaction for this configuration. The aerodynamic coefficients for lift, drag, and moment were calculated. So far only the spatial structure of the vortex interaction was computed. It is now important to potentially use the large-scale vortex interactions, an additional energy source, to improve the aerodynamic performance

    Characterization of dynamic stall phenomenon using two-dimensional unsteady Navier-Stokes equations

    Get PDF
    Among the new significant aspects of the present work are: (1) the treatment of the far-field boundary; (2) the use of C-grid topology, with the branch-cut singularity treated analytically; (3) evaluation of the effect of the envelope of prevailing initial states, and finally; (4) the ability to employ streakline/pathline 'visualization' to probe the unsteady features prevailing in vortex-dominated flows. The far-field boundary is placed at infinity, using appropriate grid stretching. This contributes to the accuracy of the solutions, but raised a number of important issues which needed to be resolved; this includes determining the equivalent time-dependent circulation for the pitching airfoil. A secondary counter-clockwise vortex erupts from within the boundary layer and immediately pinches off the energetic leading-edge shear layer which then, through hydrodynamic instability, rolls up into the dynamic stall vortex. The streakline/pathline visualization serves to provide information for insight into the physics of the unsteady separated flow

    On-line recognition of supernova neutrino bursts in the LVD detector

    Full text link
    In this paper we show the capabilities of the Large Volume Detector (INFN Gran Sasso National Laboratory) to identify a neutrino burst associated to a supernova explosion, in the absence of an "external trigger", e.g., an optical observation. We describe how the detector trigger and event selection have been optimized for this purpose, and we detail the algorithm used for the on-line burst recognition. The on-line sensitivity of the detector is defined and discussed in terms of supernova distance and electron anti-neutrino intensity at the source.Comment: Accepted for pubblication on Astroparticle Physics. 13 pages, 10 figure

    First CNGS events detected by LVD

    Get PDF
    The CERN Neutrino to Gran Sasso (CNGS) project aims to produce a high energy, wide band νμ\nu_{\mu} beam at CERN and send it toward the INFN Gran Sasso National Laboratory (LNGS), 732 km away. Its main goal is the observation of the ντ\nu_{\tau} appearance, through neutrino flavour oscillation. The beam started its operation in August 2006 for about 12 days: a total amount of 7.6 10177.6~10^{17} protons were delivered to the target. The LVD detector, installed in hall A of the LNGS and mainly dedicated to the study of supernova neutrinos, was fully operating during the whole CNGS running time. A total number of 569 events were detected in coincidence with the beam spill time. This is in good agreement with the expected number of events from Montecarlo simulations.Comment: Accepted for publication by the European Physical Journal C ; 7 pages, 11 figure

    Multiband Photometry Evolution in the First Weeks of SN 2023ixf, a possible II-L Subtype Supernova

    Full text link
    Multiband photometric observations and their evaluation to instrumental magnitudes were performed using standard Johnson-Cousins filters (B, V, Rc) as well r and g Sloan filters, and not standard ones (R, G, B, and Clear filters). These were recorded from 9 observatories and from the MicroObservatory Robotic Telescope Network. The results describe the rapid ascent towards the maximum (2.5 magnitudes about in five days in the B filter) and the slow decrease after the maximum (0.0425 +/- 0.02 magnitudes/day in the B filter). The results highlight the strong variation of the B-V colour indices during the first 50 days (from -0.20 +/- 0.02 to +0.85 +/- 0.02) and V-R (from 0 +/- 0.01 to +0.50 +/- 0.01) after the explosion, presumably corresponding to the cooling of the stellar photosphere. At 50 days after the explosion the magnitude decrease from the maximum was observed to continue where it faded by 2.5 magnitudes (B filter), thus we propose SN 2023ixf is a Type II, subtype L, supernova (SNe)

    Study of the effect of neutrino oscillation on the supernova neutrino signal with the LVD detector

    Full text link
    We present an update of our previous study (astro-ph/0112312) on how ν\nu oscillations affect the signal from a supernova core collapse observed in the LVD detector at LNGS. In this paper we use a recent, more precise determination of the cross section (astro-ph/0302055) to calculate the expected number of inverse beta decay events, we introduce in the simulation also the ν\nu-{\rm Fe} interactions, we include the Earth matter effects and, finally, we study also the inverted mass hierarchy case.Comment: 4 pages, 4 figures, to appear in the Proceedings of ICRC 200
    corecore