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Abstract

The conservative form of the unsteady Navier—
Stokes equations in terms of vorticity and stream
function in generalized curvilinear coordinates are
used to analyze the flow structure of steady
separation and unsteady flow with massive
separation. The numerical method solves the
discretized equations using an ADI-BGE method. The
method is applied to a symmetric 12 percent thick
Joukowski airfoil. A conformal clustered grid is
generated; several 1~D stretching transformations
are used to obtain a grid that attempts to resolve
many of the multiple scales of the unsteady flow
with massive separation, while maintaining the
transformation metrics to be smooth and continuous
in the entire flow field. Detailed numerical
results are obtained for three flow configurations
(1) Re = 1000, a = 5°, (ii1) Re = 1000, a = 15°,
(1{1) Re = 10,000, a = 5°9. No artificial
dissipation was added; however, lack of a fine grid
in the normal direction has presently led to
results which are considered qualitative,
especially for case (iii).

1. Introduction

The flow over streamlined 1ifting airfoils has
been a subject of considerable interest to fluid
dynamicists and, to date, significant progress has
been made towards the design of airfoils, wings,
etc., by drawing together resources from
experimental, numerical, analytical and empirical
studies. The detailed flow structure of airfolils
and wings near maximum 1ift in low-to-high Reynolds
number (Re) flows still remains unresolved. The

increasing interest in these flows stems from the -

desire for better control in civilian aircraft, to
high maneuvering capability in high-performance
military aircraft. The improved performance can be
realized from the potential of increasing maximum
1ift and simultanecusly reducing drag under this
condition. For some combination of flow
parameters, the flow field around an airfoil
experiences significant separation which
deteriorates its performance and leads to the stall
phenomenon. The nature of the stall may be
characterized by the various phenomena such as
separation, unsteadiness, transition and
turbulence. The present study is directed towards

accurately simulating this flow field and providing
further insight for this class of flows. Other
important fluid dynamics applications involving
unsteady flows Ilnclude dlade rows in

. turbomachinery, marine propellers, helicopter rotor

blades, and bluff -bodies such as buildings, towers,
underwater cables, etc,, in cross flows. For this
class of bluff-body flows, understanding the vortex
shedding characteristics is very significant. The
simulation technique presented here can also
provide guidelines for analyzing some of these flow
fields. :

For ,_two;dimensional, incompressible, unsteady,
viscous, separated flows at moderately high
Reynolds number, two viable approaches are
available. (1) The first method involves an

“inviscid-viscous strong-interaction analysis based

on localized-flow regions, whereas (i) the second
method consists of using, in the entire region of
interest, a single set of equations which have the
necessary mutual dependence between the invisecid
and viscous flow built into them. For massive
separated viscous unsteady flows.of interest in
this study, the second approach is preferred. In
this latter approach, the complete unsteady Navier-
Stokes equations are preferred over other reduced
forms of Navier-Stokes equations discussed by
K. Ghia, Osswald and U. Ghia [1].

The prediction of two-dimensional flow past
various airfoils has been comprehensively reviewed
by Cebeci, Stewartson and Whitelaw [2]. Noteworthy
papers on both the computatlional approaches
mentioned earlier, as well as experimental and
analytical methods, have been extensively reviewed
by these authors and as such, no attempt is made
here to review the past work. Instead, only some
relevant studies using the Navier-Stokes equations
approach and a couple of very recent experimental
and analytical studies are cited here. Mehta and
Lavan [3] studied the incompressible flow past a §
percent thick Joukowski airfoil at Re = 1000, and
angle of incidence, a = 15°, using the Navier-
Stokes equations, and provided accurate results for
the stall characteristics. Care was exercised in
determining the far-field boundary condition which
was placed at a finite distance from the airfoil.
Their numerical simulation employed an O-type grid;
the resolution of an O~grid generally degrades in
the wake region. The dynamic stall of an
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osecillating airfoil was also studied by Mehta (4]
using the Navier-Stokes equatjions for the NACA 0012
airfolil with Re up to 10,000 and the reduced
frequency of oscillation k = 0,5 based on the half-
chord. The formation of the leading-edge vortex
was carefully simulated using a fourth-order
accurate method, again, with the O0-grid. Wu and
his coworkers [5] have contributed significantly in
developing integro-differential and integral

methods for the solution of the Navier-Stokes
. equations for incompressible and compressible, as

well as laminar and turbulent, flows past Joukowski
airfoils at angle of attack. 1In some of these
studies, flow past a 9 percent thick symmetric
Joukowski airfoil at Re = 1000 and a = 15° was
computed. In order to improve the efficiency of
their solution, Wu et al. [6] suggested a zonal
procedure with the unique feature of using the
complete unsteady Navier-Stokes equations only in
the massive separated detached zone. For the same
Joukowskil airfoil configuration, they showed
improved computational efficiency. Hodge et
al. [7] solved the unsteady Navier~Stokes equations
using O-grids and predicted flows around NACA

airfoils at stall Re of P-lx10u and 2x105 and
compared their results qualitatively with
experimental data.

Mueller [8] experimentally studied the
Lissaman 7769 and Miley M06-13-128 airfoils at
Re < 300,000 which is lower than their design value
of Re = 600,000. A hysteresis loop was observed
which depended on the relative locations of laminar
separation and transition. This data may become

valuable for validating numerical analysis for

these airfoils. Smith [9] has reviewed the
theoretical aspects of steady and unsteady laminar
separation. The importance of a rational
theoretical analysis in building a basis for the

interacting~analysis approach and providing

guidelines in the resolution of multiple scales by
properly developing the grid for the Navier-Stokes
approach was clearly emphasized. The two-
dimensional unsteady separation was linked closely
with instabilities in the boundary layer and the
separating shear layer. It is the belief of the
present authors that coherent experimental,
theoretical and numerical studies, with proper
interaction amongst them, are needed to gain a more
complete understanding of unsteady separated flows,

The primary objective of the present work is
to study the two-~dimensional unsteady separated
flow past an airfoil at moderate Re near the stall
conditions and accurately determine the flow
characteristics in the massive separated region.
To achieve this goal, the analysis of K. Chia,
Osswald and U. Ghia [1] developed earlier for
internal flow was used as the starting basis for
analyzing the flow past symmetric Joukowski
airfoils at high angle of attack.

2. Governing Equations

In terms of the vorticity vector @ and the

velocity vector V, the unsteady, incompressible
Navier~Stokes equations consist of a temporally
parabolic vorticity transport equation

o . s i - g -
5t * (VePNw = (wW)V - e (v x ¥ x w) (n

together with the kinematic definition for
vorticity e

e VxV . . (2)

Here, Re is a Reynolds number defined as

Re = Upl/v = U_C/v

where, for the airfoil problem, the reference speed

UR is U_, the reference length LR is the chord ¢

and v 13 the constant kinematic viscosity of the
incompressible fluid. Equations (1) and (2) have
been nondimensfonalized using ¢ as the
characteristic unit of length, U_ as the

characteristic unit of speed, ¢/U_ as the
characteristic unit of time, and U_/c as the
characteristic unit of vortlcity:

For 2-D or axisymmetric flow, the local

velocity vector V can be related to a stream
function ¢ as

Vevyxo (3)

where 53 is ‘the fundamental contravariant base
vector. For consistency with Eqs. (1) and (2), Eq.

(3) ts nondimensionalized using Uac2 as the.
characteristic unit for y.

Equations (1~3) represent a vorticity4stream
function formulation for the unsteady,
incompressible Navier-Stokes equations. For
numerical implementation, their component form in a

generalized coordinate system (e',£%) nhas been
given by Osswald, K. Chia and U. Ghia [10]. Use of
the two~dimensional component form of the equations

for w and ¢ in (61.52) coordinates, together with
appropriate boundary conditions for w.and ¢, leads
to a well-posed boundary-value problem for the
airfoil flow. However the discussion on the
boundary conditions will be deferred until the
coordinate system to be used has been selected.
The governing equations (1-3) form a coupled set of
nonlinear equations and some comments are made next
on the numerical method used to obtain their
solution.

3. Comments-on- the Numerical-Method

The numerical method used was first developed
by Osswald and Ghia [11] and was further refined by
K. Ghia, Osswald and U. Chia (1]. As discussed in
Ref. [1], this method can be briefly described as
follows. The spatial derivatives are approximated
by appropriate finite~difference quotients using
central differences for both convective and
diffusive derivatives in the governing equations.
It is significant to note that, in this study, even
with central-difference approximations for all
spatial derivatives, no artificial dissipation is
added to dampen any high-frequency errors, but
continued effort is made to carefully annihilate
these errors through appropriate resolution of the
various length scales of the problem. For
consistent differencing, some of the metric
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coefficients are evaluated at the staggered half-
grid point locations, whereas the metric
determinant, the solution field functions and the
source term are evaluated at the cell corners., The
conservative form of the vorticity transport
equation is solved, using an ADI method, whereas
the stream function equation is solved using a
block Gaussian elimination (BGE) technique. The
BGE technique is a direct extension of the Gaussian
elimination method to matrices whose individual
elements are themselves matrices or blocks. The
BGE technique provides the effective inversion of
an (N+M x NeM) matrix through the actual inversion
of a predetermined sequence of N(MxM) submatrices;
the choice of M<N leads to the best computational
efficiency. The BGE approach naturally divides
itself into two separate calculation phases. In
the first phase, a sequence of N(MxM) matrices is
formed and individually inverted by simple scalar
Gaussian elimination. This phase is the most time-
consuming part of the calculation. Fortunately,
this preliminary phase need be executed only once
for a given coordinate choice, its result being
permanently stored as a series of coefficient
matrices for later use in the second phase of this
procedure. The second phase consists of the actual
solution of the block matrix problem for a
prescribed source term through a set of recursion
relationships. 1In this method, the transport
equation at time level tn+1 is discretized with the

stream function being frozen at the time level tn.’

Due to this uncoupling, the formal temporal accuray
of the scheme is O(At ) with the overall formal
1)2 (A52)2]. For
solution of the unsteady Navier—stokes equations,
it is the Dirichlet stream-function Poisson problem
which must be solved repeatedly In a given
coordinate system for a progression of updated
sources. Hence, the combined ADI-BGE method used
here is very well suited for analyzing
incompressible unsteady separated flows governed by
the unsteady Navier-Stokes equations.

4, Massive Separated Incompressible Flow
Past Symmetric Joukowski Airfoils

The flow past a 12 percent thick symmetric
Joukowski airfoil at moderate Re separates when the
free stream is at incidence to the airfoil. As the
angle of attack is increased, even at moderate Re,
a region of massive separation develops on the
upper surface. The geometry of the model problem
of flow past a Joukowski airfoil can be accurately
represented using conformal transformation
techniques (see, e.g., Davis [12] and Ives [13]),
and various conformal grids have been obtained for
this problem. Furthermore, the flow past a
Joukowski airfoil has been used by many
investigators as a model problem for studying
viscous separated flow, because of the simplicity
of its geometry for this class of flows.
Consequently, results of other investigators are
also available for qualitative comparison and,
hence, this problem is used as a model problem in
the present study.

4.1 The Coordinate System

Clustered conformal coordinates are employed
in the present viscous-flow study. These
coordinates are obtained by a parabolic

transformation of the inviscid-flow complex-
potential plane, followed by appropriate 1-D
clustering transformations for resolving the
various length scales of the flow problem.

For lifting cases, i.e., for flows past
airfoils at non-zero incidence a, the corresponding
inviscid flow has non-zero circulation T and,
consequently, a multi-valued potential function
oin' Also, the inviscid flow is not symmetric

about the airfoil mean line or camber line.
Nevertheless, all of the viscous-flow results
presented in this paper for symmetric.airfoils were
obtained using a coordinate system which is
symmetrical about the airfoil chord line, even for
the lifting cases. In other words, the coordinates.
used are based on the corresponding potential flow
with zero circulation and are obtained as a
limiting case of the general coordinates developed
for the inviscid flow with non-zero circulation.
Some details of generating these general conformal
coordinates for flows with circulation are
described here in this section. For additional
details, see Osswald, K. Ghia and U. Ghia [14].
The use of these general coordinates in the study
of viscous flows for lifting ajrfoils will be the
subject of a future paper.

4,1.1 Inviscid Flow Past a Joukowski Airfoil at
Incidence

The complex potential P for the inviscid flow
of a uniform stream at incidence & past a symmetric
Joukowski airfoil is obtained conveniently from the
knowledge of the complex potential for flow past a
circular cylinder into which the Joukowski airfoil
can be mapped via the Joukowsk! transformation.
Accordingly, the complex potential is given as

2
a T R
P=R+-R—*izln(z) . X 4)

where

?in) is the complex potential,
are the velocity potential and stream

function, respectively, for the 2-D
inviscid flow, :

[T

(r1+ir2) is the complex variable in the

circle plane in which the Joukowski
airfoil profile is mapped as a
circle,

a is the radius of the circular cylinder in the

circle plane,
and

' = 4ma sina {s the circulation around the

cylinder (or airfoil).

The radius a is related to the thickness ratio
(i.e. maximum thickness tm x/chor‘d ¢) of the

airfoil and the i{ncidence angle a of the free
stream approaching the airfoil. This relation is
established by the Joukowski transformation as
discussed next.

The complexvvariable R in the.circle plane is

related to the complex variable z (é x1+ix2) in the

physical plane via the Joukowskl transformation as

(5)

z et e sz



where
T =R eia - €p
- .
lzLEl = [(1+2e) + (352071 0

p = (1+2e)/{1 + (1+2¢)(3+2¢)]

and € iIs related to the thickness ratio tmax/c by

the expression

uep(1¢e)2
1+ 25(1+e711-cosem)

t
mix [sinem(1-cosem)] .
(6)

In this expression, em is the value of 8 in the

physical plane at which the maximum thickness of
the airfoil occurs, i.e.,

% = ®ly(e)=0.5 trax’®

It should be noted that:an 0(:2) approximate
solution to Eq. (6) can be obtained to yield
t
em = 2%/3 so that € = —3— ;%EE.
i V3 A
study, however, this approximation was not invoked,
but Eq. (6) was solved numerically using the method
of successive substitution.
for a 12 percent thick symmetric Joukowski airfoil,
the value of £ so determined differed from the
approximate value by almost 10 percent.

In the present

Figure (1) shows the inviscid flow problem
considered in the physical plane, the circle plane

and, finally, in the complex-potential plane. The

lines of °in = constant and win = constant form a

rectangular coordinate system in the P-plane and
yield a surface-oriented conformal coordinate
system in the physical plane. Hence, the P-plane

could constitute the computational plane. However, .

it is not qulte appropriate for this purpose
because of the following three main reasons. First
of all, the coordinates vin = constant experience

large turning in the vicinity of the leading
stagnation point, the degree of turning depending
upon the incidence angle a and the roundedness of
the airfoil in this region and near the leading
edge. Also, the manner in which the coordinates
“are disposed is not conducive to proper resolution
in this region. Secondly, the flow occurs over the
entire unbounded P-plane extending from == to +e«

along both oin and win; this is computationally

impractial. Finally, it is noted that the airfoil
profile between the leading stagnation point (LSP)
and the trailing edge point (TEU) following the

. . . - +
upper contour, i.e., along Win' ¥ n* 0 , extends

in © 0 to 01n = ¢TEU'

i

from ¢ Following the lower

contour, i.e., along Eln = 0, the airfoil profile

between LSP and TEL extends from °1n =0 to °1n =

¢TEL where

¢TEL = ¢TEU -T. (7)

It was observed that, -

In fact, for each point on the trailing streamline
in the physical plane,

0 = o, - T : (8)

This distinction in the values of ¢1n must be

maintained for all points along the upper and lower
trailing streamlines, downstream of the trailing
edge. Hence, a desired grid-point distribution may
be assigned only along the upper trailing
streamline, for example, while the grid point
distribution along the lower trailing streamline is
no longer arbitrary, but is constrained by
condition (8).

Each of the above three points is addressed as
follows. First of all, the P-plane i3 transformed
to yet another plane, namely, the n-plane (n ¢ n1

*inz)uslng the conformal parabolic transformation

(n)2 = P + 2afcosa + (a+w)sinal . €))

In the n~plane, the flow problem occupies only the
upper-half plane. Secondly, suitable 1-D
clustering transformations are employed to map the
upper half of the n-plane to a unit square in the

g-plane (g 4 51 + 162) while also providing
resolution of the various streamwise and normal
length scales in the flow. The nature of these
clustering transformations is as discussed in
Ref. [15]. Differences in details are necessitated
by facts such as the leading stagnation point LSP
no longer coinciding with the leading edge point
LE. Finally, the requirement expressed {n Egs. (7)
or (8) is implemented in the n-plane by recognizing
that, downstream of the trailing edge point,

e .
along vin = 0' s P o= Qu N
aqd; along ¥, = 0, Pa= o, .
so that
1,2 1,2
(nl) = (nu) r . (10)

for points downstream of the trailing edge. This
implementation is carried over to the E-~plane as
well., The gE-~plane constitutes the final
computational plane. Use of a uniform mesh in the
unit square in the f£-plane provides a surface-
oriented mesh in the unbounded physical plane, with
appropriately clustered grid-point distributions.
Figure 1(d-e) shows the flow problem represented in
the n-plane and finally, in the £-plane.

The procedure described in this section was
used to generate clustered conformal coordinates
for analysis of viscous flow past a 12 percent

thick (i.e., Emax/c = 0.12) Joukowski airfoll.

Figure 2(a) shows the coordinate system
corresponding to a (229 x 45) mesh for a free
stream at zero incidence, i.e., a = 0, while Fig.
2(b) shows the coordinates for the case with
a = 10°, Clustering of coordinate lines can be
observed in the region near the airfoil surface as
well as near the leading and trailing edges and the
leading stagnation point.
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4.2 Initial and Boundary- Conditions

. The final working variables in the flow-
problem are the vorticity w and the perturbation

stream function wp defined as the departure of the_

actual viscous-flow stream function Yy from the
corresponding inviscid solution vin' i.e.

wp =V =¥ (11)
The initial conditioné used for the unsteady
solution correspond to the requirement that
inviscid flow prevails everywhere at the starting
time instant T = O.

The boundary conditions used correspond to the
condition of zero slip at the airfoil surface,
inviscid-flow conditions infinitely far from the
airfoil and continuity of the flow solution across
the branch cut along the trailing streamline in the
wake. The actual numerical form of the second-
order vorticity boundary condition used at the
surface 1s given in Ref. [1]. As in the previous
studies by the authors, implicit treatment of all
boundary conditions is emphasized. This {is
maintained for the branch-cut boundary as well.

5. Results and- Discussion

5.1 Physical Scales

The unsteady Navier-Stokes analysis and
solution procedure discussed in the earlier

sections are applied to a 12 percent thick

symmetric Joukowski airfoll at moderate Re and
angle of incidence a. The steady separated or the
unsteady massive separated flow fields over the

Joukowski airfoil at angle of incidence have

multiple disparate length and time scales. If the
physics of this class of flow problems has to be
accurately modelled, then these scales must be
resolved; otherwise, the flow field will not be

simulated accurately in critical areas such as near:

the separation and reattachment points, etc.
Rothmayer and Davis [16] have discussed how the
lack of proper resolution of the length scale at
the separation point could rather drastically
influence the overall eddy and the reattachment
point if there is one. Based on whether the
separation is mild or massive, two distinct flow
structures result. For the former, the viscous

layer is of O(t/c), where t is the thickness of the
airfoil, whereas, for the latter case, the detached
zone is of 0(1). Some of the important length
scales associated with these flow structures are

the boundary-layer scale of O(Ref1/2); the

separation scales of O(Re 3/8) and O(Re 5/8) in the
streamwise and normal directions, respectively, at
the separation point. Further, since the
boundaries external to the body are at true
infinity, the inviscid scale of 0{(u) must be
resolved so that the flow smcothly asymptotes to
the inviscid boundary conditions. 1In order to
follow the vortices in the wake reglon, the length

scale of the wake region must be resolved. For the

unsteady flow field, the temporal scale based on
the highest critical frequency needs to be
resolved. In the scope of the present study, the
scale based on the frequency of the self-induced
unsteadiness generated by the shedding of vortices
must be resolved. Only if all of the scales

mentioned are properly considered in the generation
of the grid is there a hope of simulating physical
phenomena using the unsteady Navier-Stokes
equations.

5.2 Quality of Grid, Accuracy and Computational
Efficiency

This discussion on the physical scales shows
large disparity in the various scales. This places
a major burden on the grid. The conformal
clustered grid shown in Fig. 2(a,b) has different
clustering transformations on the upper and lower
surfaces of the airfoil in the streamwise direction
and a different clustering in the wake. Two
distinet normal transformations are used both on
the upper and lower surfaces. The transformation
metrics are smooth and their continuity 1is
maintained across the various regions. Even after
exercising. this care, a (229x45) computational grid
was considered necessary; it uses up the.full core
capacity of the present host AMDAHL 470 V/7A and
Perkin Elmer 3250 MPS computer systems. Hence, the
standard approach of refining the grid i{s not
feasible since computational resources do not
permit it. Therefore, the results of this study,
at present, are considered only qualitative. Every
effort i{s made to prevent them from being
contaminated by numerical dissipation or quality of
grid; but only after thorough comparison with
experimental or asymptotic studies can their
quantitative usefulness be assessed. Even in the

" present work, the analysis was checked for

congistancy by using the free-stream condition at
all boundaries and ensuring the solution recovered
the free-stream values everywhere. It is
anticipated that the use of the general conformal
clustered grid, discussed in section 4.1, for which
the wake centerline approaches the free stream
direction will enhance the accuracy of the results.

The use of central differences throughout the
flow field leads to the formal overall accuracy of

ofat, (AE1)2.(A52)2]. For the configurations with
Re = 1000, the resulting solutions are wiggle~free;
however, for the case of Re = 10,000, the
inadequacy of the grid leads to some oscillations
in the vorticity; these are presently being
examined. The relative computational efficiency of
the present algorithm was measured in terms of the
CPU time 1 required to advance the solution by one
time step per spatial grid point. The value of the

"computational effort" index is t = 3.72 x 10'"

seconds for the AMDAHL 470 V/7A computer.

5.3 Mildly Separated Steady Flow:--Re = 1000,

a.=5°

The flow past a symmetric Joukowski airfoll
with the parameters listed was computed starting
from the inviscid solution shown in Fig. 3(a) at
the characteristic time of T = 0. This, as well
as, the other results to follow, have been computed
using a coordinate system which is symmetrical
about the airfoil chord line and is shown in Figure
3{b). The transient stream function and vorticity
contours leading to steady state are shown in Fig.
3(c~-2). At T = 1.92, in Fig. 3(e), a small
separation bubble has been established near the
trailing edge (TE). This primary bubble bursts,
and the shear layer detaches, with a simultaneous
emergence of a secondary bubble at the TE, as seen
in Fig. 3(g). The secondary bubble intensifies and
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grows and merges with the primary bubble as seen in
Fig. 3(1). This configuration achieves steady
state around T = 7, but _the calculations were
continued up to T = 13, Fig. 3(k), by which time it
became certain that steady state has been achieved.
The vorticity contours show a maximum vorticity of
296 at T = 0.4, Fig. 3(d); the maximum vorticity
gradually reduces to 222 at T = 13.0, Fig. 3(L).
The vorticity contours show laminar boundary layers
on the upper and lower surfaces with a tongue-like
behavior in the vorticity at T = 1.92 in Fig. 3(f)
and at subsequent times. As time progresses, an
asymmetry developes in the vorticity contours and
it appears that the region of concentrated
vorticity near the leading edge (LE) has been
satisfactorily resolved.

5.4 Massive Separation - Unsteady Flow:
Re = 1000, a = 15°

Although the present results are obtained as
the solution of the unsteady Navier-Stokes
equations, the point of flow separation has been
defined as the point on the airfoil surface where
the surface shear vanishes and the instantaneous
streamline detaches from the solid wall. (For
further details regarding the separation point in
unsteady flow, the reader is.referred to the review
article by McCrowskey [17]). For the flow
configuration discussed in this subsection, results
from T = 10.0 to T = 21, extending up to two chord
lengths in the wake region, are shown in Fig. #4(a-
f). Results beyond the characteristic time of

T = 21, not shown here, confirm that the flow is.

inherently unsteady due to the vortex shedding
mechanism established by the free shear-layer
instability. The instantaneous stream function

contours at T = 10 show massive separation on the

suction surface. The shear layer detaches near the
LE and never reattaches to the airfoil surface.
Two counterclockwise co-rotating bubbles appear aft
of the shoulder towards the TE. These bubbles are
in the process of coalescing. The corresponding
instantaneous vorticity contours show several well
developed eddies, some of which are in the process
of merging due to intense interaction between them.
Intermediate solutlons are needed to explain the
evolution process of the various eddies and the
collective interaction phenomenon described by
Ho et al. [18], where more than two eddies merge to
form a single eddy. The flow field is dominated by
large vortices and their passage over the upper
surface produces unsteady forces that are different
from those observed during statiec stall. Following
Smith {9], Rothmayer and Davis [16] have referred
to this phenomenon as 'dynamic stall'. The large-
scale organized structure observed needs further
examination in order to seek its relation, if any,
to turbulent coherent structure (see Hussain [19]).
Figure 4(c) shows the emergence of a new bubble on
the suction surface and the previous bubbles in
Fig. U4(a) appear to have merged and convected
downstream. The corresponding vorticity contours
at T = 11 are shown in Fig. 4(d) and are
characterized by very similar vortical structures
as in Fig. 4(b). At T = 21, the flow structure in
Fig. 4(e-f) resembles that in Fig. U(c-d).

For this configuration, the results are also
plotted over a wider field extending up to five
chord lengths in the wake region and are shown in
Fig. 5(a-d) at the characteristic times T = 11 and
21. The massive separated unsteady flow field is
clearly seen here in Fig. 5(a=-c). 1In Fig. 5(e),
the shear layer that detaches near LE reattaches at

the TE. It is important that {nstantaneous
coefficients of lift and drag be calculated and
correlaton with streamline contours be established
to show the increase in 1lift coefficlent that may
result due to the reattachment of the shear layer
at the TE. Figure 5(b-d) shows several vortices
interacting with each other. Some fragmentation of
lage-scale eddies into small eddies can also be
observed. Further analysis of the results for this
case reveals a nonlinear limit-cycle type behavior
which 1{s presently being quantified, so as to
determine, for instance, the Strouhal number for
vortex shedding process.

The velocity vectors and pressure coefficient
Cp for the two Joukowski airfoil configurations

studie at Re = 1000 are depicted in Fig. 6(a-d).
For the case of a = 5°, steady~state velocity
profiles at various locations on the airfoil and in
the wake are shown in Fig. 6(a). These profiles
clearly show the mildly separated region as well as
the velocity deflicit in the wake region. The
inviscid as well as the viscous Cp are -shown in Fig.

"6 (b); the maximum difference between them occurs
on the suction surface, very close to the LE, with
the magnitude of the inviscid Cp being considerably

larger than that of the viscous Cp, as expected.

For the unsteady massive separated flow case;
instantaneous velocity vectors as well as Cp are

shown in Fig. 6(c=d) at T = 21, The velocity
profiles show the massive separated region on the
airfoil surface; the presence of multiple bubbles
in the wake can also be seen by the nature of the
wake velocity profiles. The curves of
instantaneous CP show that, for the viscous flow,

the leading stagnation point ‘has shifted towards
the LE.

The computation of this unsteady flow case
with massive separation demonstrates the ability of
the analysis to treat the flow past this Joukowski
airfoil at higher incidence. Elrafee, Wu and
Lekoudis [20] have used a 9 percent thick Joukowski
airfoil at Re = 1000, a = 15° and have computed
subsonic flow, at M = 0.4 and Pr = 1,0, around it.
The results for instantaneous streamline and
vorticity contours, as well as the Cp distribution,

show rather minimal departure from the
corresponding incompressible flow. Further,
Sugavanam and Wu [21] have computed turbulent flow
past a modified 12 percent thick Joukowski airfoil

at Re = ’3.6x106, a = 15°, using a two-equation k-¢
model. The contours of time-averaged streamlines
show qualitative resemblance to the contours of
instantaneous streamlines shown in Fig. 4, except

- that the separated region at the high~Re case is

smaller in extent. ‘It would be interesting to
qualitatively compare the time~averaged vorticity
contours with those in Fig. Y4; however, these have
not been presented by those authors. It should be
noted that, in their work, the far-field boundary
conditon was placed at approximately eight chord
lengths. Detailed examination of other parameters
which are more sensitive could perhaps better
reveal the departure from the present
incompressible unsteady case computed.



5.5 Massive Separation ~-Unsteady Flow:

Re =- 10,000, a =-5°

McCroskey (171 has discussed that, when
Re > 1000, three-dimensional and turbulence effects
are present in the flow field and the unsteady
Navier~Stokes analysis should account for these
effects. In the present study, this configuration
1s used to test the ability of the code to compute
this flow as well as to find the features
distinguishing this flow from that for Re = 1000,
even if they are only qualitative, to aid in future
study of this phenomenon. As stated earlier, the
symmetric grid used i{s inadequate in the normal
direction as well as In the wake, since the wake
centerline does not follow the coordinates used.
Also, the vorticity contours display some wiggles.
Hence, the results for this configuration are, at
best, qualitative. Figure 7(a=2%) shows the
instantaneous stream function and vorticity
contours from T = 2.0 to T = 34 for this unsteady
flow. At T = 2.0, the instantaneous streamlines in
Fig. 7(a) show a well-behaved laminar separated
flow. From the corresponding vorticity contours in

Fig. 7(b), it appears that the boundary layer is.

well behaved and a narrow wake trails the airfoil.
By T = 5.0, Fig. 7(c¢), most of the suction surface
exhibits reversed flow. Figure 7(d) shows the
onset of Tollmien~Schlichting type instability on
the upper surface, as well as the emergence and
intensification of an eddy near the trailing edge.
At present, the available graphics facility is not
adequate for post-processing a large-scale data
base and only painstaking hard labor has permitted
generation of computer plots at some characteristic
time instants. With proper graphics facilities
which are presently being sought, more precise
informaton will be made available in the future.
Somewhere between T = 5.0 and T = 12.0, a total
breakdown of the flow occurs, with a sudden
increase in the normal length scale as can be seen
on the suction surface in Fig. 7(f). The
streamline contours in the wake at T = 12,0 in Fig.
7(e) are not smooth; this is due to the wiggles
that appear in the vorticity field. The wiggles
are more prominent on the wake originating from the
lower surface and are somewhat reduced as T
increases to 14.0, Fig. 7(h), and to subsequent
times -at T = 24.0 and T = 34, as depicted in Figs.
7(1) and 7(k). The streamline contours at T = 14.0
in Fig. 7(i) bear a strong similarity to those at
T = 24,0, suggesting that the flow may exhibit a
nonlinear limit-cycle behavior. These qualitative
results are encouraging and warrant careful
investigation of high-Re flows using this unsteady
analysis.

6. Conclusions

The unsteady analysis of Osswald and Ghia [11]
has been extended to analyze 2-D unsteady separated
external flow past symmetric Joukowski airfoils at
high incidence and moderate Re. The boundaries
external to the airfoils are placed at infinity.
The discretized problem is formulated using central
differences for spatial derivatives, thus avoiding
any artificial viscosity. The fully implicit ADI-
BGE time- marching method. wibh formal overall

accuracy of O[At, (AE )2 (AE ) ], 1s used to solve
the discretized equations.

Three configurations are investigated for a 12
percent thick Joukowski airfoil and their flow

-obtained.

features are carefully discussed. For Re = 1000
and a = 5°, a steady_separated flow structure is
For this Re, when a is increased to 15°,
a massive ugsteady separated flow rield is
obtained. A nonlinear limit-cycle type analysis is
attempted on the latter results. At angle of
incidence of 5°, Re was increased to 10,000 and the
flow shows an instability around T = 5.0, and
exhibits a turbulent-like behavior thereafter. The
results of the present analysis are still
considered qualitative and fine-mesh results using
the new clustered conformal grid (Fig. 2b), are
desired in order to make more conclusive statements
about the flow structure observed in these results.
The results obtained do show the potential of the
present-analysis to study high-incidence high-Re.
flow. It is planned to extend the analysis to
lifting NACA airfoils and carefully compare the
results with available experimental and numerical
results.
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