5 research outputs found

    Modeling surface segregation of smart PU coatings at hydrophilic and hydrophobic interfaces via coarse-grained molecular dynamics and mesoscopic simulations

    Get PDF
    Developing adaptive coatings having desired functionalities at targeted interfaces is one of the major efforts in the coatings science area. The adaptation of the surface functionality to the changing surface conditions can be maintained by introducing dangling chains with different properties to the cross-linked polymer coatings. In this work, we strive to investigate the change in interfacial morphology of PU coatings as exposed to hydrophilic (HPI) and hydrophobic (HPB) interfaces by employing molecular simulations at the coarse-grained and mesoscopic levels. The molecular structure and surface segregation dynamics are studied for PU coatings having pure HPI, mixture of HPI and HPB, and amphiphilic dangling chains. The dual-scale simulations, Dissipative Particle Dynamics (DPD) and MARTINI model, yield results about the dangling chain structures at the interface in terms of their end-to-end distances, where HPI chains adopt a more extended conformation in water in comparison to oil interfaces. The reverse is observed to be valid for the HPB chains. Regarding the dangling chain dynamics, a swift migration towards the interfaces is noticed at about 10 ns for both of the simulation methods. The structures of the dangling chains and their interaction with the interfaces are also characterized by computing the radial distribution function (RDF) profiles. Preferential interactions between the HPI/water and HPB/oil are clearly noted. The switchability of the surfaces is also studied by simulating the system in cycles, such that the interface is changed from water to oil and back to water. The migration of HPI groups in the dangling chains towards water and vice versa in each cycle is clearly shown by the simulations. In all, the inherent structure and dynamics of the dangling chains is obtained at the molecular level by the dual-scale molecular simulations. Our findings reveal a significant level of understanding about interfacial morphology of thermoset coatings modified by dangling chains, where the results can be extended to find applications in guiding the experimental studies

    MARTINI-based simulation method for step-growth polymerization and its analysis by size exclusion characterization: a case study of cross-linked polyurethane

    Get PDF
    Simulation studies of step-growth polymerization, e.g., polymerization of polyurethane systems, hold great promise due to having complete control over the reaction conditions and being able to perform an in-depth analysis of network structures. In this work, we developed a (completely automated) simulation method based on a coarse-grained (CG) methodology, i.e., the MARTINI model, to study the cross-linking reaction of a diol, a tri-isocyanate molecule and one-hydroxyl functional molecule to form a polyurethane network without and with dangling chains. This method is capable of simulating the cross-linking reactions not only up to very high conversions, but also under rather complicated reaction conditions, i.e., a non-stoichiometric ratio of the reactants, solvent evaporation and multi-step addition of the reactants. We introduced a novel network analysis, similar to size-exclusion chromatography based on graph theory, to study the growth of the network during the polymerization process. By combining the reaction simulations with these analysis methods, a set of correlations between the reaction conditions, reaction mechanisms and final network structure and properties is revealed. For instance, a two-step addition of materials for the reaction, i.e., first the dangling chain to the tri-isocyanate and then the diol, leads to the highest integrated network structure. We observed that different reaction conditions lead to different glass transition temperatures (Tg) of the network due to the distinct differences in the final network structures obtained. For example, by addition of dangling chains to the network, the Tg decreases as compared to the network without dangling chains, as also is commonly observed experimentally

    MARTINI-based simulation method for step-growth polymerization and its analysis by size exclusion characterization:a case study of cross-linked polyurethane

    No full text
    \u3cp\u3eSimulation studies of step-growth polymerization, e.g., polymerization of polyurethane systems, hold great promise due to having complete control over the reaction conditions and being able to perform an in-depth analysis of network structures. In this work, we developed a (completely automated) simulation method based on a coarse-grained (CG) methodology, i.e., the MARTINI model, to study the cross-linking reaction of a diol, a tri-isocyanate molecule and one-hydroxyl functional molecule to form a polyurethane network without and with dangling chains. This method is capable of simulating the cross-linking reactions not only up to very high conversions, but also under rather complicated reaction conditions, i.e., a non-stoichiometric ratio of the reactants, solvent evaporation and multi-step addition of the reactants. We introduced a novel network analysis, similar to size-exclusion chromatography based on graph theory, to study the growth of the network during the polymerization process. By combining the reaction simulations with these analysis methods, a set of correlations between the reaction conditions, reaction mechanisms and final network structure and properties is revealed. For instance, a two-step addition of materials for the reaction, i.e., first the dangling chain to the tri-isocyanate and then the diol, leads to the highest integrated network structure. We observed that different reaction conditions lead to different glass transition temperatures (Tg) of the network due to the distinct differences in the final network structures obtained. For example, by addition of dangling chains to the network, the Tg decreases as compared to the network without dangling chains, as also is commonly observed experimentally.\u3c/p\u3

    PolySMart: a general coarse-grained molecular dynamics polymerization scheme

    Get PDF
    The development of simulation methods to study the structure and dynamics of a macroscopically sized piece of polymer material is important as such methods can elucidate structure-property relationships. Several methods have been reported to construct initial structures for homo- and co-polymers; however, most of them are only useful for short linear polymers since one needs to pack and equilibrate the far-from-equilibrium initial structures, which is a tedious task for long or hyperbranched polymers and unfeasible for polymer networks. In this method article, we present PolySMart, i.e., an open-source python package, which can effectively produce fully equilibrated homo- and hetero-polymer melts and solutions with no limitation on the polymer topology and size, at a coarse-grained resolution and through a bottom-up approach. This python package is also capable of exploring the polymerization kinetics through its reactive scheme in realistic conditions so that it can model the multiple co-occurring polymerization reactions (with different reaction rates) as well as consecutive polymerizations under stoichiometric and non-stoichiometric conditions. Thus, the equilibrated polymer models are generated through correct polymerization kinetics. A benchmark and verification of the performance of the program for several realistic cases, i.e., for homo-polymers, co-polymers, and crosslinked networks, is given. We further discuss the capability of the program to contribute to the discovery and design of new polymer materials
    corecore