1,666 research outputs found
Testing Identifiable Kernel P Systems Using an X-machine Approach
This paper presents a testing approach for kernel P systems (kP systems),
based on the X-machine testing framework and the concept of cover automaton. The
testing methodology ensures that the implementation conforms the speci cations, under
certain conditions, such as the identi ably concept in the context of kernel P systems
Independent electrons model for open quantum systems: Landauer-Buettiker formula and strict positivity of the entropy production
A general argument leading from the formula for currents through an open
noninteracting mesoscopic system given by the theory of non-equilibrium steady
states (NESS) to the Landauer-Buettiker formula is pointed out. Time reversal
symmetry is not assumed. As a consequence it follows that, as far as the system
has a nontrivial scattering theory and the reservoirs have different
temperatures and/or chemical potentials, the entropy production is strictly
positive.Comment: 12 pages. Submitted for publication in J. Math. Phys. on 2006-06-05.
Revision and extension of: G. Nenciu, A general proof of Landauer-Buettiker
formula, [math-ph/0603030
Ground displacement trends in an urban environment using multi-temporal inSAR analysis and two decades of multi-sensor satellite-based SAR imagery
This exploratory research used three sets of single polarized synthetic aperture radar (SAR) satellite data and a multi-temporal radar interferometry (InSAR) methodology to determine the spatial evolution and ground displacement trends of several industrial parks located in the metropolitan area of Bucharest, Romania. From 70candidate areas, 20 large industrial parks were selected for analysis and interpretation. InSAR analysis used SAR data acquired between 1992 and 2014 by ERS-1/-2, ENVISAT, and TerraSAR-X satellites. Ground movement patterns identified before and after 2000 were linked to groundwater table investigations based on 25 water wells, located on or in the proximity of these areas. The analysis revealed an initial subsidence or no change in uplift areas before 2000, followed by a return to zonal movement. This trend may also be related to the shutting down of industries that consumed large amounts of water, which increased deep groundwater pressure. Only one continuous subsidence trend was identified for an industrial area located south of the city, an area which continues to be active over time. Ongoing research is focused on using traditional geological andgeomorphologic investigations, as well as comparisons with fieldGlobal Navigation Satellite System (GNSS) data.info:eu-repo/semantics/submittedVersio
Faraday effect revisited: sum rules and convergence issues
This is the third paper of a series revisiting the Faraday effect. The
question of the absolute convergence of the sums over the band indices entering
the Verdet constant is considered. In general, sum rules and traces per unit
volume play an important role in solid state physics, and they give rise to
certain convergence problems widely ignored by physicists. We give a complete
answer in the case of smooth potentials and formulate an open problem related
to less regular perturbations.Comment: Dedicated to the memory of our late friend Pierre Duclos. Accepted
for publication in Journal of Physics A: Mathematical and Theoretical
Design and Analysis of Genetically Constructed Logic Gates
Synthetic biology, comprising many aspects including in vivo, in vitro and in silico techniques, models and methods, programming paradigms and tools, is a rapidly growing field with promising potential in building new synthetically constructed devices and systems. Synthetic biology features unconventional biological systems that do not naturally exist in nature. In this paper, we discuss a software platform, Infobiotics Workbench, developed to perform in silico experiments for synthetic biology systems. We utilise the tool on an unconventional system, a genetic logic gate
A novel application of deep learning with image cropping: a smart city use case for flood monitoring
© 2020, The Author(s). Event monitoring is an essential application of Smart City platforms. Real-time monitoring of gully and drainage blockage is an important part of flood monitoring applications. Building viable IoT sensors for detecting blockage is a complex task due to the limitations of deploying such sensors in situ. Image classification with deep learning is a potential alternative solution. However, there are no image datasets of gullies and drainages. We were faced with such challenges as part of developing a flood monitoring application in a European Union-funded project. To address these issues, we propose a novel image classification approach based on deep learning with an IoT-enabled camera to monitor gullies and drainages. This approach utilises deep learning to develop an effective image classification model to classify blockage images into different class labels based on the severity. In order to handle the complexity of video-based images, and subsequent poor classification accuracy of the model, we have carried out experiments with the removal of image edges by applying image cropping. The process of cropping in our proposed experimentation is aimed to concentrate only on the regions of interest within images, hence leaving out some proportion of image edges. An image dataset from crowd-sourced publicly accessible images has been curated to train and test the proposed model. For validation, model accuracies were compared considering model with and without image cropping. The cropping-based image classification showed improvement in the classification accuracy. This paper outlines the lessons from our experimentation that have a wider impact on many similar use cases involving IoT-based cameras as part of smart city event monitoring platforms
Integration testing of heterotic systems
Computational theory and practice generally focus on single-paradigm systems, but relatively little is known about how best to combine components based on radically different approaches (e.g. silicon chips and wetware) into a single coherent system. In particular, while testing strategies for single-technology artefacts are generally well developed, it is unclear at present how to perform integration testing on heterotic systems: can we develop a test-set generation strategy for checking whether specified behaviours emerge (and unwanted behaviours do not) when components based on radically different technologies are combined within a single system? In this paper, we describe an approach to modelling multi-technology heterotic systems using a general-purpose formal specification strategy based on Eilenberg's X-machine model of computation. We show how this approach can be used to represent disparate technologies within a single framework, and propose a strategy for using these formal models for automatic heterotic test-set generation. We illustrate our approach by showing how to derive a test set for a heterotic system combining an X-machine-based device with a cell-based P system (membrane system)
Researches on the Climate and Environmental Factors Influencing the Buffalo Cow breeding in North-West Romania
It was demonstrated that there is a direct correlation between the buffalo cow breeding and the size of the plastic and energy resources provided by forage and the preservation capacity of these resources. The efficiency of the metabolic transformations is optimum in a thermal neutrality environment as any stress of the thermo-regulating system is followed by increased energy consumption. The present paper approaches the correlation between climate and environmental factors and the amount and quality of buffalo cow milk. To assess the influence of climatic and environmental factors on the buffalo cow breeding, the average monthly, annual, and multi-annual values, as well as the minimum and maximum values of the temperature were analyzed during a 5 year period (2005-2009). Results showed a particularly negative influence on buffalo cow breeding due to environmental media during the breeding period and the grazing period
Modelling and validating an engineering application in kernel P systems
© 2018, Springer International Publishing AG. This paper illustrates how kernel P systems (kP systems) can be used for modelling and validating an engineering application, in this case a cruise control system of an electric bike. The validity of the system is demonstrated via formal verification, carried out using the kPWorkbench tool. Furthermore, we show how the kernel P system model can be tested using automata and X-machine based techniques
- …