7 research outputs found

    Guidelines for reporting on animal fecal transplantation (GRAFT) studies: recommendations from a systematic review of murine transplantation protocols

    Get PDF
    Fecal microbiota transplant (FMT) is a powerful tool used to connect changes in gut microbial composition with a variety of disease states and pathologies. While FMT enables potential causal relationships to be identified, the experimental details reported in preclinical FMT protocols are highly inconsistent and/or incomplete. This limitation reflects a current lack of authoritative guidance on reporting standards that would facilitate replication efforts and ultimately reproducible science. We therefore systematically reviewed all FMT protocols used in mouse models with the goal of formulating recommendations on the reporting of preclinical FMT protocols. Search strategies were applied across three databases (PubMed, EMBASE, and Ovid Medline) until June 30, 2020. Data related to donor attributes, stool collection, processing/storage, recipient preparation, administration, and quality control were extracted. A total of 1753 papers were identified, with 241 identified for data extraction and analysis. Of the papers included, 92.5% reported a positive outcome with FMT intervention. However, the vast majority of studies failed to address core methodological aspects including the use of anaerobic conditions (91.7% of papers lacked information), storage (49.4%), homogenization (33.6%), concentration (31.5%), volume (19.9%) and administration route (5.3%). To address these reporting limitations, we developed theGuidelines for Reporting Animal Fecal Transplant (GRAFT) that guide reporting standards for preclinical FMT. The GRAFT recommendations will enable robust reporting of preclinical FMT design, and facilitate high-quality peer review, improving the rigor and translation of knowledge gained through preclinical FMT studies.Kate R. Secombe, Ghanyah H. Al-Qadami, Courtney B. Subramaniam, Joanne M. Bowen, Jacqui Scott, Ysabella Z.A. Van Sebille ... et a

    Repositioning of the global epicentre of non-optimal cholesterol

    Get PDF
    High blood cholesterol is typically considered a feature of wealthy western countries1,2. However, dietary and behavioural determinants of blood cholesterol are changing rapidly throughout the world3 and countries are using lipid-lowering medications at varying rates. These changes can have distinct effects on the levels of high-density lipoprotein (HDL) cholesterol and non-HDL cholesterol, which have different effects on human health4,5. However, the trends of HDL and non-HDL cholesterol levels over time have not been previously reported in a global analysis. Here we pooled 1,127 population-based studies that measured blood lipids in 102.6 million individuals aged 18 years and older to estimate trends from 1980 to 2018 in mean total, non-HDL and HDL cholesterol levels for 200 countries. Globally, there was little change in total or non-HDL cholesterol from 1980 to 2018. This was a net effect of increases in low- and middle-income countries, especially in east and southeast Asia, and decreases in high-income western countries, especially those in northwestern Europe, and in central and eastern Europe. As a result, countries with the highest level of non-HDL cholesterol—which is a marker of cardiovascular risk—changed from those in western Europe such as Belgium, Finland, Greenland, Iceland, Norway, Sweden, Switzerland and Malta in 1980 to those in Asia and the Pacific, such as Tokelau, Malaysia, The Philippines and Thailand. In 2017, high non-HDL cholesterol was responsible for an estimated 3.9 million (95% credible interval 3.7 million–4.2 million) worldwide deaths, half of which occurred in east, southeast and south Asia. The global repositioning of lipid-related risk, with non-optimal cholesterol shifting from a distinct feature of high-income countries in northwestern Europe, north America and Australasia to one that affects countries in east and southeast Asia and Oceania should motivate the use of population-based policies and personal interventions to improve nutrition and enhance access to treatment throughout the world.</p

    Repositioning of the global epicentre of non-optimal cholesterol

    Get PDF
    High blood cholesterol is typically considered a feature of wealthy western countries1,2. However, dietary and behavioural determinants of blood cholesterol are changing rapidly throughout the world3 and countries are using lipid-lowering medications at varying rates. These changes can have distinct effects on the levels of high-density lipoprotein (HDL) cholesterol and non-HDL cholesterol, which have different effects on human health4,5. However, the trends of HDL and non-HDL cholesterol levels over time have not been previously reported in a global analysis. Here we pooled 1,127 population-based studies that measured blood lipids in 102.6 million individuals aged 18 years and older to estimate trends from 1980 to 2018 in mean total, non-HDL and HDL cholesterol levels for 200 countries. Globally, there was little change in total or non-HDL cholesterol from 1980 to 2018. This was a net effect of increases in low- and middle-income countries, especially in east and southeast Asia, and decreases in high-income western countries, especially those in northwestern Europe, and in central and eastern Europe. As a result, countries with the highest level of non-HDL cholesterol�which is a marker of cardiovascular risk�changed from those in western Europe such as Belgium, Finland, Greenland, Iceland, Norway, Sweden, Switzerland and Malta in 1980 to those in Asia and the Pacific, such as Tokelau, Malaysia, The Philippines and Thailand. In 2017, high non-HDL cholesterol was responsible for an estimated 3.9 million (95 credible interval 3.7 million�4.2 million) worldwide deaths, half of which occurred in east, southeast and south Asia. The global repositioning of lipid-related risk, with non-optimal cholesterol shifting from a distinct feature of high-income countries in northwestern Europe, north America and Australasia to one that affects countries in east and southeast Asia and Oceania should motivate the use of population-based policies and personal interventions to improve nutrition and enhance access to treatment throughout the world. © 2020, The Author(s), under exclusive licence to Springer Nature Limited

    A randomised, open-label trial to assess the optimal treatment strategy in early diffuse cutaneous systemic sclerosis: the UPSIDE study protocol

    Get PDF
    Contains fulltext : 232577.pdf (Publisher’s version ) (Open Access)INTRODUCTION: Systemic sclerosis (SSc) is a chronic, autoimmune connective tissue disease associated with high morbidity and mortality, especially in diffuse cutaneous SSc (dcSSc). Currently, there are several treatments available in early dcSSc that aim to change the disease course, including immunosuppressive agents and autologous haematopoietic stem cell transplantation (HSCT). HSCT has been adopted in international guidelines and is offered in current clinical care. However, optimal timing and patient selection for HSCT are still unclear. In particular, it is unclear whether HSCT should be positioned as upfront therapy or rescue treatment for patients refractory to immunosuppressive therapy. We hypothesise that upfront HSCT is superior and results in lower toxicity and lower long-term medical costs. Therefore, we propose this randomised trial aiming to determine the optimal treatment strategy for early dcSSc by comparing two strategies used in standard care: (1) upfront autologous HSCT versus (2) immunosuppressive therapy (intravenous cyclophosphamide pulse therapy followed by mycophenolate mofetil) with rescue HSCT in case of treatment failure. METHODS AND ANALYSIS: The UPSIDE (UPfront autologous hematopoietic Stem cell transplantation vs Immunosuppressive medication in early DiffusE cutaneous systemic sclerosis) study is a multicentre, randomised, open-label, controlled trial. In total, 120 patients with early dcSSc will be randomised. The primary outcome is event-free survival at 2 years after randomisation. Secondary outcomes include serious adverse events, functional status and health-related quality of life. We will also evaluate changes in nailfold capillaroscopy pattern, pulmonary function, cardiac MR and high-resolution CT of the chest. Follow-up visits will be scheduled 3-monthly for 2 years and annually in the following 3 years. ETHICS AND DISSEMINATION: The study was approved by the Dutch Central Committee on Research Concerning Human Subjects (NL72607.041.20). The results will be disseminated through patient associations and conventional scientific channels. TRIAL REGISTRATION NUMBERS: NCT04464434; NL 8720

    New evidence for alpha clustering structure in the ground state band of <sup>212</sup>Po

    No full text
    Half-lives of the low-lying yrast states of 212Po have been measured using the delayed coincidence fast-timing method. We report on the first measurement of the 41+ half-life, as well as a new measurement of the 61+ half-life with improved accuracy compared to previous studies. The extracted lifetime of the 41+ and 61+ state have been determined to be 100(14) ps and 1.66(28) ns respectively. With these measurements, precise values are now available for the reduced transition strengths B(E2) of all ground state band levels in 212Po up to the first 8+ state, in particular B(E2; 41+→21+) = 9.4(13) W.u. and B(E2;61+→41+) = 8.7(15) W.u. Comparison of the new available data with an α-clustering model calculation provides evidence that the inclusion of the α-cluster degree of freedom significantly improves agreement with experimental data compared to earlier shell model calculations

    Heterogeneous contributions of change in population distribution of body mass index to change in obesity and underweight

    No full text
    From 1985 to 2016, the prevalence of underweight decreased, and that of obesity and severe obesity increased, in most regions, with significant variation in the magnitude of these changes across regions. We investigated how much change in mean body mass index (BMI) explains changes in the prevalence of underweight, obesity, and severe obesity in different regions using data from 2896 population-based studies with 187 million participants. Changes in the prevalence of underweight and total obesity, and to a lesser extent severe obesity, are largely driven by shifts in the distribution of BMI, with smaller contributions from changes in the shape of the distribution. In East and Southeast Asia and sub-Saharan Africa, the underweight tail of the BMI distribution was left behind as the distribution shifted. There is a need for policies that address all forms of malnutrition by making healthy foods accessible and affordable, while restricting unhealthy foods through fiscal and regulatory restrictions. © Copyright
    corecore