164 research outputs found

    CDC20 in and out of mitosis: a prognostic factor and therapeutic target in hematological malignancies

    Get PDF
    Cell division cycle 20 homologue (CDC20) is a well-known regulator of cell cycle, as it controls the correct segregation of chromosomes during mitosis. Many studies have focused on the biological role of CDC20 in cancer development, as alterations of its functionality have been linked to genomic instability and evidence demonstrated that high CDC20 expression levels are associated with poor overall survival in solid cancers. More recently, novel CDC20 functions have been demonstrated or suggested, including the regulation of apoptosis and stemness properties and a correlation with immune cell infiltration. Here, we here summarize and discuss the role of CDC20 inside and outside mitosis, starting from its network of interacting proteins. In the last years, CDC20 has also attracted more interest in the blood cancer field, being overexpressed and showing an association with prognosis both in myeloid and lymphoid malignancies. Preclinical findings showed that selective CDC20 and APC/CCDC20/APC/CCDH1 inhibitors, namely Apcin and proTAME, are effective against lymphoma and multiple myeloma cells, resulting in mitotic arrest and apoptosis and synergizing with clinically-relevant drugs. The evidence and hypothesis presented in this review provide the input for further biological and chemical studies aiming to dissect novel potential CDC20 roles and targeting strategies in hematological malignancies

    Improving working conditions and job satisfaction in healthcare. A study concept design on a participatory organizational level intervention in psychosocial risks management

    Get PDF
    This paper contributes to the literature on organizational interventions on occupational health by presenting a concept study design to test the efficacy of a Participatory Organizational level Intervention to improve working conditions and job satisfaction in Healthcare. The Participatory Organizational-level Intervention is developed using the Italian methodology to assess and manage psychosocial risks tailored to Healthcare. We added an additional step; evaluation, aiming to examine how the intervention works, what worked for whom in which circumstances. This ongoing study is conducted in collaboration with two large Italian Hospitals (more than 7,000 employees). The study design comprises a quasi-experimental approach consisting of five phases and surveys distributed pre- and post-intervention aiming to capture improvements in working conditions and job satisfaction. Moreover, to evaluate the efficacy of the Intervention in terms of process and content, we use a realist evaluation to test Context-Mechanisms-Outcome (CMO) configurations. We collect contextual factors at baseline and during and post-intervention process data on the key principles of line manager support and employees participation. This study is expected to provide insights on methods and strategies to improve working conditions and employees’ job satisfaction and on national policies in the occupational health framework

    \u201cA step further in the discovery of phthalein derivatives as Thymidylate Synthase inhibitors\u201d

    Get PDF
    Phenolphthalein (Pth) was discovered as a low micromolar inhibitor of the enzyme ThymidylateSynthase (TS), an important target for anticancer chemotherapy. In the present work, a newseries of Pth derivatives have been designed and synthesized. All the compounds have beencharacterized through NMR techniques. A set of twelve Pth derivatives has been tested againstthree TS enzymes and their bio-profiles obtained. The bio-profiling studies suggest that theinhibitory potency of the compounds has been improved of about fifty times againstLactobacillus casei TS (LcTS) and five times against humant TS (hTS) with respect to the lead.The most active compound shows an inhibition constant (Ki) of 70 nM against Escherichia coliTS (EcTS)

    Fetal striatal grafting slows motor and cognitive decline of Huntington's disease

    Get PDF
    OBJECTIVE: To assess the clinical effect of caudate-putaminal transplantation of fetal striatal tissue in Huntington's disease (HD). METHODS: We carried out a follow-up study on 10 HD transplanted patients and 16 HD not-transplanted patients. All patients were evaluated with the Unified HD Rating Scale (UHDRS) whose change in motor, cognitive, behavioural and functional capacity total scores were considered as outcome measures. Grafted patients also received morphological and molecular neuroimaging. RESULTS: Patients were followed-up from disease onset for a total of 309.3 person-years (minimum 5.3, median 11.2 years, maximum 21.6 years). UHDRS scores have been available since 2004 (median time of 5.7 years since onset, minimum zero, maximum 17.2 years). Median post-transplantation follow-up was 4.3 years, minimum 2.8, maximum 5.1 years. Adjusted post-transplantation motor score deterioration rate was reduced compared to the pretransplantation period, and to that of not-transplanted patients by 0.9 unit/years (95% CI 0.2 to 1.6). Cognitive score deterioration was reduced of 2.7 unit/years (95% CI 0.1 to 5.3). For grafted patients the 2-year post-transplantation [(18)F]fluorodeoxyglucose positron emission tomography (PET) showed striatal/cortical metabolic increase compared to the presurgical evaluation; 4-year post-transplantation PET values were slightly decreased, but remained higher than preoperatively. [(123)I]iodobenzamide single photon emission CT demonstrated an increase in striatal D2-receptor density during postgrafting follow-up. CONCLUSIONS: Grafted patients experienced a milder clinical course with less pronounced motor/cognitive decline and associated brain metabolism improvement. Life-time follow-up may ultimately clarify whether transplantation permanently modifies the natural course of the disease, allowing longer sojourn time at less severe clinical stage, and improvement of overall survival

    Identification of Two DNMT3A Mutations Compromising Protein Stability and Methylation Capacity in Acute Myeloid Leukemia

    Get PDF
    Somatic mutations of DNMT3A occur in about 20% of acute myeloid leukemia (AML) patients. They mostly consist in heterozygous missense mutations targeting a hotspot site at R882 codon, which exhibit a dominant negative effect and are associated with high myeloblast count, advanced age, and poor prognosis. Other types of mutations such as truncations, insertions, or single-nucleotide deletion also affect the DNMT3A gene, though with lower frequency. The present study aimed to characterize two DNMT3A gene mutations identified by next-generation sequencing (NGS), through analysis of protein stability and DNA methylation status at CpG islands. The first mutation was a single-nucleotide variant of DNMT3A at exon 20 causing a premature STOP codon (c.2385G > A; p.Trp795 17; NM-022552.4). The DNMT3A mutation load increased from 4.5% to 38.2% during guadecitabine treatment, with a dominant negative effect on CpG methylation and on protein expression. The second mutation was a novel insertion of 35 nucleotides in exon 22 of DNMT3A (NM-022552.4) that introduced a STOP codon too, after the amino acid Glu863 caused by a frameshift insertion (c.2586-2587insTCATGAATGAGAAAGAGGACATCTTATGGTGCACT; p. Thr862-Glu863fsins). The mutation, which was associated with reduced DNMT3A expression and CpG methylation, persisted at relapse with minor changes in the methylation profile and at protein level. Our data highlight the need to better understand the consequences of DNMT3A mutations other than R882 substitutions in the leukemogenic process in order to tailor patient treatments, thus avoiding therapeutic resistance and disease relapse

    Inhibitor sensitivity of respiratory complex I in human platelets: A possible biomarker of ageing

    Get PDF
    AbstractNADH-Coenzyme Q reductase was assayed in platelet mitochondrial membranes obtained from 19 pools of two venous blood samples from female young (19–30 years) individuals and 18 pools from aged ones (66–107 years). The enzyme activities were not significantly changed in the two groups, but a decrease of sensitivity to the specific inhibitor, rotenone, occurred in a substantial number of aged individuals. The results are in agreement with the predictions of the mitochondrial theory of ageing and may be used to develop a sensitive biomarker of the ageing process

    Somatic Point Mutations in mtDNA Control Region Are Influenced by Genetic Background and Associated with Healthy Aging: A GEHA Study

    Get PDF
    Tissue specific somatic mutations occurring in the mtDNA control region have been proposed to provide a survival advantage. Data on twins and on relatives of long-lived subjects suggested that the occurrence/accumulation of these mutations may be genetically influenced. To further investigate control region somatic heteroplasmy in the elderly, we analyzed the segment surrounding the nt 150 position (previously reported as specific of Leukocytes) in various types of leukocytes obtained from 195 ultra-nonagenarians sib-pairs of Italian or Finnish origin collected in the frame of the GEHA Project. We found a significant correlation of the mtDNA control region heteroplasmy between sibs, confirming a genetic influence on this phenomenon. Furthermore, many subjects showed heteroplasmy due to mutations different from the C150T transition. In these cases heteroplasmy was correlated within sibpairs in Finnish and northern Italian samples, but not in southern Italians. This suggested that the genetic contribution to control region mutations may be population specific. Finally, we observed a possible correlation between heteroplasmy and Hand Grip strength, one of the best markers of physical performance and of mortality risk in the elderly. Our study provides new evidence on the relevance of mtDNA somatic mutations in aging and longevity and confirms that the occurrence of specific point mutations in the mtDNA control region may represent a strategy for the age-related remodelling of organismal functions

    Evidence for Sub-Haplogroup H5 of Mitochondrial DNA as a Risk Factor for Late Onset Alzheimer's Disease

    Get PDF
    BACKGROUND: Alzheimer's Disease (AD) is the most common neurodegenerative disease and the leading cause of dementia among senile subjects. It has been proposed that AD can be caused by defects in mitochondrial oxidative phosphorylation. Given the fundamental contribution of the mitochondrial genome (mtDNA) for the respiratory chain, there have been a number of studies investigating the association between mtDNA inherited variants and multifactorial diseases, however no general consensus has been reached yet on the correlation between mtDNA haplogroups and AD. METHODOLOGY/PRINCIPAL FINDINGS: We applied for the first time a high resolution analysis (sequencing of displacement loop and restriction analysis of specific markers in the coding region of mtDNA) to investigate the possible association between mtDNA-inherited sequence variation and AD in 936 AD patients and 776 cognitively assessed normal controls from central and northern Italy. Among over 40 mtDNA sub-haplogroups analysed, we found that sub-haplogroup H5 is a risk factor for AD (OR=1.85, 95% CI:1.04-3.23) in particular for females (OR=2.19, 95% CI:1.06-4.51) and independently from the APOE genotype. Multivariate logistic regression revealed an interaction between H5 and age. When the whole sample is considered, the H5a subgroup of molecules, harboring the 4336 transition in the tRNAGln gene, already associated to AD in early studies, was about threefold more represented in AD patients than in controls (2.0% vs 0.8%; p=0.031), and it might account for the increased frequency of H5 in AD patients (4.2% vs 2.3%). The complete re-sequencing of the 56 mtDNAs belonging to H5 revealed that AD patients showed a trend towards a higher number (p=0.052) of sporadic mutations in tRNA and rRNA genes when compared with controls. CONCLUSIONS: Our results indicate that high resolution analysis of inherited mtDNA sequence variation can help in identifying both ancient polymorphisms defining sub-haplogroups and the accumulation of sporadic mutations associated with complex traits such as AD

    Identification of genetic variants associated with Huntington's disease progression: a genome-wide association study

    Get PDF
    Background Huntington's disease is caused by a CAG repeat expansion in the huntingtin gene, HTT. Age at onset has been used as a quantitative phenotype in genetic analysis looking for Huntington's disease modifiers, but is hard to define and not always available. Therefore, we aimed to generate a novel measure of disease progression and to identify genetic markers associated with this progression measure. Methods We generated a progression score on the basis of principal component analysis of prospectively acquired longitudinal changes in motor, cognitive, and imaging measures in the 218 indivduals in the TRACK-HD cohort of Huntington's disease gene mutation carriers (data collected 2008–11). We generated a parallel progression score using data from 1773 previously genotyped participants from the European Huntington's Disease Network REGISTRY study of Huntington's disease mutation carriers (data collected 2003–13). We did a genome-wide association analyses in terms of progression for 216 TRACK-HD participants and 1773 REGISTRY participants, then a meta-analysis of these results was undertaken. Findings Longitudinal motor, cognitive, and imaging scores were correlated with each other in TRACK-HD participants, justifying use of a single, cross-domain measure of disease progression in both studies. The TRACK-HD and REGISTRY progression measures were correlated with each other (r=0·674), and with age at onset (TRACK-HD, r=0·315; REGISTRY, r=0·234). The meta-analysis of progression in TRACK-HD and REGISTRY gave a genome-wide significant signal (p=1·12 × 10−10) on chromosome 5 spanning three genes: MSH3, DHFR, and MTRNR2L2. The genes in this locus were associated with progression in TRACK-HD (MSH3 p=2·94 × 10−8 DHFR p=8·37 × 10−7 MTRNR2L2 p=2·15 × 10−9) and to a lesser extent in REGISTRY (MSH3 p=9·36 × 10−4 DHFR p=8·45 × 10−4 MTRNR2L2 p=1·20 × 10−3). The lead single nucleotide polymorphism (SNP) in TRACK-HD (rs557874766) was genome-wide significant in the meta-analysis (p=1·58 × 10−8), and encodes an aminoacid change (Pro67Ala) in MSH3. In TRACK-HD, each copy of the minor allele at this SNP was associated with a 0·4 units per year (95% CI 0·16–0·66) reduction in the rate of change of the Unified Huntington's Disease Rating Scale (UHDRS) Total Motor Score, and a reduction of 0·12 units per year (95% CI 0·06–0·18) in the rate of change of UHDRS Total Functional Capacity score. These associations remained significant after adjusting for age of onset. Interpretation The multidomain progression measure in TRACK-HD was associated with a functional variant that was genome-wide significant in our meta-analysis. The association in only 216 participants implies that the progression measure is a sensitive reflection of disease burden, that the effect size at this locus is large, or both. Knockout of Msh3 reduces somatic expansion in Huntington's disease mouse models, suggesting this mechanism as an area for future therapeutic investigation
    corecore