253 research outputs found

    Forecasts for the detection of the magnetised cosmic web from cosmological simulations

    Full text link
    The cosmic web contains a large fraction of the total gas mass in the universe but is difficult to detect at most wavelengths. Synchrotron emission from shock-accelerated electrons may offer the chance of imaging the cosmic web at radio wavelengths. In this work we use 3D cosmological ENZO-MHD simulations (combined with a post-processing renormalisation of the magnetic field to bracket for missing physical ingredients and resolution effects) to produce models of the radio emission from the cosmic web. In post-processing we study the capabilities of 13 large radio surveys to detect this emission. We find that surveys by LOFAR, SKA1-LOW and MWA have a chance of detecting the cosmic web, provided that the magnetisation level of the tenuous medium in filaments is of the order of 1% of the thermal gas energy.Comment: 19 pages, 18 figures. A&A accepted, in press. The public repository of radio maps for the full volumes studied in this work is available at http://www.hs.uni-hamburg.de/DE/Ins/Per/Vazza/projects/Public_data.htm

    Visualization, Exploration and Data Analysis of Complex Astrophysical Data

    Full text link
    In this paper we show how advanced visualization tools can help the researcher in investigating and extracting information from data. The focus is on VisIVO, a novel open source graphics application, which blends high performance multidimensional visualization techniques and up-to-date technologies to cooperate with other applications and to access remote, distributed data archives. VisIVO supports the standards defined by the International Virtual Observatory Alliance in order to make it interoperable with VO data repositories. The paper describes the basic technical details and features of the software and it dedicates a large section to show how VisIVO can be used in several scientific cases.Comment: 32 pages, 15 figures, accepted by PAS

    Squeeze Film Damper Modeling: A Comprehensive Approach

    Get PDF
    Squeeze film dampers (SFDs) are components used in many industrial applications, ranging from turbochargers to jet engines. SFDs are applied when the vibration levels or some instability threatens the safe operation of the machine. However, modeling these components is difficult and somewhat counterintuitive due to the multiple complex phenomena involved. After a thorough investigation of the state of the art, the most relevant phenomena for the characterization of the SFDs are highlighted. Among them, oil film cavitation, air ingestion, and inertia are investigated and modeled. The paper then introduces a numerical model based on the Reynolds equation, discretized with the finite difference method. Different boundary conditions for oil feeding and discharging are implemented and investigated. The model is validated by means of experimental results available in the literature, whereas different designs and configurations of the feeding and sealing system are considered. Eventually, an example of the application of a SFD to a compressor rotor for the reduction of vibration and correction of the instability is proposed. The paper provides an insight regarding the critical aspects of modeling SFDs, underscoring the limits of the numerical model, and suggesting where to further develop and improve the modeling

    VisIVOWeb: A WWW Environment for Large-Scale Astrophysical Visualization

    Get PDF
    This article presents a newly developed Web portal called VisIVOWeb that aims to provide the astrophysical community with powerful visualization tools for large-scale data sets in the context of Web 2.0. VisIVOWeb can effectively handle modern numerical simulations and real-world observations. Our open-source software is based on established visualization toolkits offering high-quality rendering algorithms. The underlying data management is discussed with the supported visualization interfaces and movie-making functionality. We introduce VisIVOWeb Network, a robust network of customized Web portals for visual discovery, and VisIVOWeb Connect, a lightweight and efficient solution for seamlessly connecting to existing astrophysical archives. A significant effort has been devoted for ensuring interoperability with existing tools by adhering to IVOA standards. We conclude with a summary of our work and a discussion on future developments

    A portable platform for accelerated PIC codes and its application to GPUs using OpenACC

    Get PDF
    We present a portable platform, called PIC_ENGINE, for accelerating Particle-In-Cell (PIC) codes on heterogeneous many-core architectures such as Graphic Processing Units (GPUs). The aim of this development is efficient simulations on future exascale systems by allowing different parallelization strategies depending on the application problem and the specific architecture. To this end, this platform contains the basic steps of the PIC algorithm and has been designed as a test bed for different algorithmic options and data structures. Among the architectures that this engine can explore, particular attention is given here to systems equipped with GPUs. The study demonstrates that our portable PIC implementation based on the OpenACC programming model can achieve performance closely matching theoretical predictions. Using the Cray XC30 system, Piz Daint, at the Swiss National Supercomputing Centre (CSCS), we show that PIC_ENGINE running on an NVIDIA Kepler K20X GPU can outperform the one on an Intel Sandybridge 8-core CPU by a factor of 3.4

    VisIVO - Integrated Tools and Services for Large-Scale Astrophysical Visualization

    Full text link
    VisIVO is an integrated suite of tools and services specifically designed for the Virtual Observatory. This suite constitutes a software framework for effective visual discovery in currently available (and next-generation) very large-scale astrophysical datasets. VisIVO consists of VisiVO Desktop - a stand alone application for interactive visualization on standard PCs, VisIVO Server - a grid-enabled platform for high performance visualization and VisIVO Web - a custom designed web portal supporting services based on the VisIVO Server functionality. The main characteristic of VisIVO is support for high-performance, multidimensional visualization of very large-scale astrophysical datasets. Users can obtain meaningful visualizations rapidly while preserving full and intuitive control of the relevant visualization parameters. This paper focuses on newly developed integrated tools in VisIVO Server allowing intuitive visual discovery with 3D views being created from data tables. VisIVO Server can be installed easily on any web server with a database repository. We discuss briefly aspects of our implementation of VisiVO Server on a computational grid and also outline the functionality of the services offered by VisIVO Web. Finally we conclude with a summary of our work and pointers to future developments

    Interactive 3D visualization for theoretical Virtual Observatories

    Get PDF
    Virtual Observatories (VOs) are online hubs of scientific knowledge. They encompass a collection of platforms dedicated to the storage and dissemination of astronomical data, from simple data archives to e-research platforms offering advanced tools for data exploration and analysis. Whilst the more mature platforms within VOs primarily serve the observational community, there are also services fulfilling a similar role for theoretical data. Scientific visualization can be an effective tool for analysis and exploration of datasets made accessible through web platforms for theoretical data, which often contain spatial dimensions and properties inherently suitable for visualization via e.g. mock imaging in 2d or volume rendering in 3d. We analyze the current state of 3d visualization for big theoretical astronomical datasets through scientific web portals and virtual observatory services. We discuss some of the challenges for interactive 3d visualization and how it can augment the workflow of users in a virtual observatory context. Finally we showcase a lightweight client-server visualization tool for particle-based datasets allowing quantitative visualization via data filtering, highlighting two example use cases within the Theoretical Astrophysical Observatory.Comment: 10 Pages, 13 Figures, Accepted for Publication in Monthly Notices of the Royal Astronomical Societ

    COSMOS: A Hybrid N-Body/Hydrodynamics Code for Cosmological Problems

    Get PDF
    We describe a new hybrid N-body/hydrodynamical code based on the particle-mesh (PM) method and the piecewise-parabolic method (PPM) for use in solving problems related to the evolution of large-scale structure, galaxy clusters, and individual galaxies. The code, named COSMOS, possesses several new features which distinguish it from other PM-PPM codes. In particular, to solve the Poisson equation we have written a new multigrid solver which can determine the gravitational potential of isolated matter distributions and which properly takes into account the finite-volume discretization required by PPM. All components of the code are constructed to work with a nonuniform mesh, preserving second-order spatial differences. The PPM code uses vacuum boundary conditions for isolated problems, preventing inflows when appropriate. The PM code uses a second-order variable-timestep time integration scheme. Radiative cooling and cosmological expansion terms are included. COSMOS has been implemented for parallel computers using the Parallel Virtual Machine (PVM) library, and it features a modular design which simplifies the addition of new physics and the configuration of the code for different types of problems. We discuss the equations solved by COSMOS and describe the algorithms used, with emphasis on these features. We also discuss the results of tests we have performed to establish that COSMOS works and to determine its range of validity.Comment: 43 pages, 14 figures, submitted to ApJS and revised according to referee's comment

    Ablação traumática de pavilhão auditivo

    Get PDF
    O artigo nĂŁo apresenta resumo

    New constraints on the magnetic field in cosmic web filaments

    Get PDF
    Strong accretion shocks are expected to illuminate the warm hot intergalactic medium encompassed by the filaments of the cosmic web, through synchrotron radio emission. Given their high sensitivity, large low-frequency radio facilities may already be able to detect signatures of this extended radio emission from the region between two close and massive galaxy clusters. In this work we exploit the non-detection of such diffuse emission by deep observations of two pairs of relatively close ('10 Mpc) and massive (M500 = 1014 M ) galaxy clusters using the LOw-Frequency ARray. By combining the results from the two putative inter-cluster filaments, we derive new independent constraints on the median strength of intergalactic magnetic fields: B0 Mpc < 2:5 Ă— 102 nG (95% confidence level). Based on cosmological simulations and assuming a primordial origin of the B-fields, these estimates can be used to limit the amplitude of primordial seed magnetic fields: B0 = 10 nG. We recommend the observation of similar cluster pairs as a powerful tool to set tight constraints on the amplitude of extragalactic magnetic fields
    • …
    corecore