122 research outputs found

    Compliance of Healthcare Workers with Hand Hygiene Practices in the Northeast of Iran: an Overt Observation

    Get PDF
    Hand hygiene (HH) is one of the most effective methods to prevent transmission and spread of microorganisms from one patient to another, also, it used to reduce the spread of pathogens in clinical settings and to help control outbreaks but compliance is usually poor. The purpose of this study was to analyze the compliance of hand hygiene and affecting factors among healthcare workers (HCWs) of northeast hospitals in Iran. This study was conducted based on observation method for the compliance of hand hygiene according to the World Health Organization (WHO) guidelines. HCWs were observed during routine patient care in different shifts, also the technique of hand hygiene was assessed through hand washing with alcohol-based disinfectant. Data were collected during 1 year, from June 2014 to July 2015 by the infection control teams in the northeast hospital of Iran. By direct observation, we evaluated a total of 92518 hand hygiene opportunities from 29 hospitals in the northeast of Iran during 1 year, with overall compliance rates in these hospitals were 43.42%. Compliance rates differed by role: nurses43%, doctors 19 % and other health workers 29%. In this observational study, we identified that adherence to hand hygiene practice and use of alcohol-based disinfectant was very low in this hospitals, so effective intervention programs to promote adherence to hand hygiene and use of disinfectants could be effective to increase compliance

    Virulence factors and antimicrobial resistance in uropathogenic escherichia coli strains isolated from cystitis and pyelonephritis

    Get PDF
    Background/aim: The aim of this study was to investigate the prevalence of virulence genes as well as patterns of antibiotic resistance in cystitis and pyelonephritis uropathogenic Escherichia coli (UPEC) isolates. Materials and methods: Two hundred UPEC isolates were collected from hospitalized patients with pyelonephritis (n = 50) and cystitis (n = 150) in Shafa Hospital in Iran. Antimicrobial susceptibility and ESBL production were determined with confirmatory tests. Polymerase chain reaction assay was performed to determine the prevalence of virulence genes in UPEC strains. Results: Of a total 200 UPEC isolates, the highest and lowest resistance rates to antibiotics were for cephalexin (74) and nitrofurantoin (9), respectively. Of these isolates, 72 (36) and 128 (64) strains were ESBL-positive and ESBL-negative, respectively. The frequency of fimH, papC, and hly was 64, 38, and 12, respectively. The most commonly identified virulence gene in ESBL-positive and ESBL-negative strains was fimH 46 (23) and 86 (43), respectively. The hlyA gene was more prevalent among patients with pyelonephritis than cystitis. Conclusion: The frequency of virulence genes was not significantly different between pyelonephritis and cystitis UPEC strains in the studied patients, but the prevalence rates of hlyA and papC genes were higher among UPEC strains isolated from inpatients compared to outpatients; hence, they could be considered as useful targets for prophylactic interventions. © TUBİTAK

    Mutations of rpob Gene Associated with Rifampin Resistance among Mycobacterium Tuberculosis Isolated in Tuberculosis Regional Reference Laboratory in Northeast of Iran during 2015-2016

    Get PDF
    Background: Drug resistance is a leading concern in control of TB. Resistance against rifampin as one of the most important drugs in the treatment of Mycobacterium tuberculosis is caused by mutations in the 81-base pair region of the rpoB gene encoding the β-subunit of RNA polymerase. This study aimed to characterize the mutations in the rpoB gene associated with rifampin resistance among M. tuberculosis. Methods: This study was conducted on referred samples of patients who did not respond to anti-TB treatment, in Tuberculosis Regional Reference Laboratory at Shariati Hospital. Drug susceptibility of M. tuberculosis isolates was surveyed using a proportional method on LJ medium. The isolates with resistant to rifampin were reconfirmed and then the rpoB gene was amplified and sequenced. Results: Among 27 resistant cases, 8, 11 and 8 people were from Iran, Afghanistan, and Turkmenistan, respectively. In 26 out of 27 isolates, rpoB gene mutations were observed. The most prevalent mutations belonged to the codon 53. The most prevalent mutations belonged to the TCG (Ser) 531TTG (leu) with prevalence 51.8 (n=14), and GAC (Asp)516TAC (Tyr), CAC (His) 526GAC (Asp) and CAC (His) 526TAC(Tyr) mutations with prevalence 14.8(n=4). Twenty-three isolates had just one mutation. Conclusion: The use of rpoB gene sequencing led to the lack of the need for growth of the organism in the culture medium, the direct use of clinical samples, reduction of biological risks and a detection about 96.3 of MDR TB cases lowering the cost of the treatment

    Epinecidin-1, a highly potent marine antimicrobial peptide with anticancer and immunomodulatory activities

    Get PDF
    Background: Antibiotic-resistant pathogens are an emerging threat in this century. Epinecidin-1 is a multi-functional Antimicrobial Peptide (AMP) produced by Orange-spotted grouper (Epinephelus coioides) has been shown to have extensive potentials as an alternative for current antibiotics. Due to the huge costs for the study and the production of a new drug, if an antimicrobial peptide has other beneficial functions in addition to antimicrobial activities, it would be preferred. Methods: In this study, properties and applications of Epinecidin-1 were investigated and addressed comprehensively. To achieve this, the Google Scholar search engine and three databases of PubMed, Scopus, and Web of Science were used. Results: Epinecidin-1 is a cationic AMP with an alpha-helical structure. Seven functional usages of this peptide have been reported in the literature including antibacterial, antifungal, antiviral, antiprotozoal, anticancer, immunomodulatory, and wound healing properties. Moreover, this peptide has high potential to be used as an active ingredient in cleaning solutions as well as application in vaccine production. Conclusion: Due to significant antimicrobial activities tested on bacteria such as Staphylococcus aureus and Helicobacter pylori and also wound healing properties, Epi-1 has high potential to be considered as an important candidate for the production of new drugs and treatment of various infections including diabetic foot ulcer and peptic ulcer. Moreover, adjuvant-like properties of Epi-1 make it a suitable candidate for the studies related to an adjuvant. Other attractive properties such as anticancer effects have also been reported for this peptide which encourages further studies on this peptide. © 2019 The Author(s)

    Somatic insulin signaling regulates a germline starvation response in Drosophila egg chambers

    Get PDF
    AbstractEgg chambers from starved Drosophila females contain large aggregates of processing (P) bodies and cortically enriched microtubules. As this response to starvation is rapidly reversed upon re-feeding females or culturing egg chambers with exogenous bovine insulin, we examined the role of endogenous insulin signaling in mediating the starvation response. We found that systemic Drosophila insulin-like peptides (dILPs) activate the insulin pathway in follicle cells, which then regulate both microtubule and P body organization in the underlying germline cells. This organization is modulated by the motor proteins Dynein and Kinesin. Dynein activity is required for microtubule and P body organization during starvation, while Kinesin activity is required during nutrient-rich conditions. Blocking the ability of egg chambers to form P body aggregates in response to starvation correlated with reduced progeny survival. These data suggest a potential mechanism to maximize fecundity even during periods of poor nutrient availability, by mounting a protective response in immature egg chambers

    RNF12 Activates Xist and Is Essential for X Chromosome Inactivation

    Get PDF
    In somatic cells of female placental mammals, one of the two X chromosomes is transcriptionally silenced to accomplish an equal dose of X-encoded gene products in males and females. Initiation of random X chromosome inactivation (XCI) is thought to be regulated by X-encoded activators and autosomally encoded suppressors controlling Xist. Spreading of Xist RNA leads to silencing of the X chromosome in cis. Here, we demonstrate that the dose dependent X-encoded XCI activator RNF12/RLIM acts in trans and activates Xist. We did not find evidence for RNF12-mediated regulation of XCI through Tsix or the Xist intron 1 region, which are both known to be involved in inhibition of Xist. In addition, we found that Xist intron 1, which contains a pluripotency factor binding site, is not required for suppression of Xist in undifferentiated ES cells. Analysis of female Rnf12−/− knockout ES cells showed that RNF12 is essential for initiation of XCI and is mainly involved in the regulation of Xist. We conclude that RNF12 is an indispensable factor in up-regulation of Xist transcription, thereby leading to initiation of random XCI

    Loss of UGP2 in brain leads to a severe epileptic encephalopathy, emphasizing that bi-allelic isoform-specific start-loss mutations of essential genes can cause genetic diseases.

    Get PDF
    Developmental and/or epileptic encephalopathies (DEEs) are a group of devastating genetic disorders, resulting in early-onset, therapy-resistant seizures and developmental delay. Here we report on 22 individuals from 15 families presenting with a severe form of intractable epilepsy, severe developmental delay, progressive microcephaly, visual disturbance and similar minor dysmorphisms. Whole exome sequencing identified a recurrent, homozygous variant (chr2:64083454A > G) in the essential UDP-glucose pyrophosphorylase (UGP2) gene in all probands. This rare variant results in a tolerable Met12Val missense change of the longer UGP2 protein isoform but causes a disruption of the start codon of the shorter isoform, which is predominant in brain. We show that the absence of the shorter isoform leads to a reduction of functional UGP2 enzyme in neural stem cells, leading to altered glycogen metabolism, upregulated unfolded protein response and premature neuronal differentiation, as modeled during pluripotent stem cell differentiation in vitro. In contrast, the complete lack of all UGP2 isoforms leads to differentiation defects in multiple lineages in human cells. Reduced expression of Ugp2a/Ugp2b in vivo in zebrafish mimics visual disturbance and mutant animals show a behavioral phenotype. Our study identifies a recurrent start codon mutation in UGP2 as a cause of a novel autosomal recessive DEE syndrome. Importantly, it also shows that isoform-specific start-loss mutations causing expression loss of a tissue-relevant isoform of an essential protein can cause a genetic disease, even when an organism-wide protein absence is incompatible with life. We provide additional examples where a similar disease mechanism applies
    corecore