14 research outputs found
A novel methodology to predict monthly municipal water demand based on weather variables scenario
This study provides a novel methodology to predict monthly water demand based on several weather variables scenarios by using combined techniques including discrete wavelet transform, principal component analysis, and particle swarm optimisation. To our knowledge, the adopted approach is the first technique to be proposed and applied in the water demand prediction. Compared to traditional methods, the developed methodology is superior in terms of predictive accuracy and runtime. Water consumption coupled with weather variables of the Melbourne City, from 2006 to 2015, were obtained from the South East Water retail company. The results showed that using data pre-processing techniques can significantly improve the quality of data and to select the best model input scenario. Additionally, it was noticed that the particle swarm optimisation algorithm accurately predicts the constants of the suggested model. Furthermore, the results confirmed that the proposed methodology accurately estimated the monthly data of municipal water demand based on a range of statistical criteria
Short-Term Urban Water Demand Prediction Considering Weather Factors
Accurate and reliable forecasting plays a key role in the planning and designing of municipal water supply infrastructures. Recent studies related to water demand prediction have shown that water demand is driven by weather variables, but the results do not clearly show to what extent. The principal aim of this research was to better understand the effects of weather variables on water demand. Additionally, it aimed to offer an appropriate and reliable technique to predict municipal water demand by using the Gravitational Search Algorithm (GSA) and Backtracking Search Algorithm (BSA) with Artificial Neural Network (ANN). Moreover, eight weather factors were adopted to evaluate their impact on the water demand. The principal findings of this research are that the hybrid GSA-ANN (Agent = 40) model is superior in terms of fitness function (based on RMSE) for yearly and seasonal phases. In addition, it is evidently clear from the findings that the GSA-ANN model has the ability to simulate both seasonal and yearly patterns for daily data water consumption
A Novel Methodology for Prediction Urban Water Demand by Wavelet Denoising and Adaptive Neuro-Fuzzy Inference System Approach
Accurate and reliable urban water demand prediction is imperative for providing the basis to design, operate, and manage water system, especially under the scarcity of the natural water resources. A new methodology combining discrete wavelet transform (DWT) with an adaptive neuro-fuzzy inference system (ANFIS) is proposed to predict monthly urban water demand based on several intervals of historical water consumption. This ANFIS model is evaluated against a hybrid crow search algorithm and artificial neural network (CSA-ANN), since these methods have been successfully used recently to tackle a range of engineering optimization problems. The study outcomes reveal that 1) data preprocessing is essential for denoising raw time series and choosing the model inputs to render the highest model performance; 2) both methodologies, ANFIS and CSA-ANN, are statistically equivalent and capable of accurately predicting monthly urban water demand with high accuracy based on several statistical metric measures such as coefficient of efficiency (0.974, 0.971, respectively). This study could help policymakers to manage extensions of urban water system in response to the increasing demand with low risk related to a decision
Urban Water Demand Prediction for a City that Suffers from Climate Change and Population Growth: Gauteng Province case study
The proper management of municipal water system is essential to sustain cities and support water security of societies. Urban water estimating has always been a challenging task for managers of water utilities and policymakers. This paper applies a novel methodology that includes data pre-processing and Artificial Neural Network (ANN) optimized with Backtracking Search Algorithm (BSA-ANN) to estimate monthly water demand in relation to previous water consumption. Historical data of monthly water consumption in the Gauteng Province, South Africa, for the period 2007–2016, were selected for the creation and evaluation of the methodology. Data pre-processing techniques played a crucial role in the enhancing of the quality of the data before creating the prediction model. The BSA-ANN model yielded the best result with a root mean square error and a coefficient of efficiency of 0.0099 mega liters and 0.979, respectively. Also, it proved more efficient and reliable than the Crow Search Algorithm (CSA-ANN), based on the scale of error. Overall, this paper presents a new application for the hybrid model BSA-ANN that can be successfully used to predict water demand with high accuracy, in a city that heavily suffers from the impact of climate change and population growth
Hybridised Artificial Neural Network model with Slime Mould Algorithm: A novel methodology for prediction urban stochastic water demand
Urban water demand prediction based on climate change is always challenging for water utilities because of the uncertainty which results from a sudden rise in water demand due to stochastic patterns of climatic factors. For this purpose, a novel combined methodology including, firstly, data pre-processing techniques were employed to decompose the time series of water and climatic factors by using Empirical Mode Decomposition and identifying the best model input via tolerance to avoid multi-collinearity. Second, the Artificial Neural Network (ANN) model was optimised by an up-to-date Slime Mould Algorithm (SMA-ANN) to predict the medium term of the stochastic signal of monthly urban water demand. Ten climatic factors over 16 years were used to simulate the stochastic signal of water demand. The results reveal that SMA outperforms Multi-Verse Optimiser and Backtracking Search Algorithm based on error scale. The performance of the hybrid model SMA-ANN is better than ANN (stand-alone) based on the range of statistical criteria. Generally, this methodology yields accurate results with a coefficient of determination of 0.9 and a mean absolute relative error of 0.001. This study can assist local water managers to efficiently manage the present water system and plan extensions to accommodate the increasing water demand
Assessing the Benefits of Nature-Inspired Algorithms for the Parameterisation of ANN in the Prediction of Water Demand
Accurate forecasting techniques for a stochastic pattern of water demand are essential for any city that faces high variability in climate factors and a shortage of water resources. This is the first research that assesses the impact of climatic factors on urban water demand in Iraq, which is one of the hottest countries in the world. We present a novel forecasting methodology that includes data preprocessing and an artificial neural network (ANN) model, which is integrated by a recently nature-inspired metaheuristic algorithm (marine predators algorithm (MPA)). The MPA-ANN algorithm will be compared with four different nature-inspired metaheuristic algorithms. Nine climatic factors were examined with different scenarios to simulate the monthly stochastic urban water demand over eleven years for Baghdad City, Iraq. The results reveal that: 1) precipitation, solar radiation, and dew point temperature are the most relevant factors to develop the models. 2) The ANN model becomes more accurate when it is used in combination with the MPA. 3) This methodology can accurately forecast the water demand considering the variability in climatic factors. These findings are of considerable significance to water utilities to plan, review, and compare the availability of freshwater resources and increase water requests (i.e., adaptation variability of climatic factors)