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Abstract 21 

Accurate forecasting techniques for a stochastic pattern of water demand are essential for any 22 

city that faces high variability in climate factors and a shortage of water resources. This is the 23 

first research that assesses the impact of climatic factors on urban water demand in Iraq, which 24 

is one of the hottest countries in the world. We present a novel forecasting methodology that 25 

includes data preprocessing and an artificial neural network (ANN) model, which is integrated 26 

by a recently nature-inspired metaheuristic algorithm (marine predators algorithm (MPA)). The 27 
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MPA-ANN algorithm will be compared with four different nature-inspired metaheuristic 28 

algorithms. Nine climatic factors were examined with different scenarios to simulate the 29 

monthly stochastic urban water demand over eleven years for Baghdad City, Iraq. The results 30 

reveal that: 1) precipitation, solar radiation, and dew point temperature are the most relevant 31 

factors to develop the models. 2) The ANN model becomes more accurate when it is used in 32 

combination with the MPA. 3) This methodology can accurately forecast the water demand 33 

considering the variability in climatic factors. These findings are of considerable significance 34 

to water utilities to plan, review, and compare the availability of freshwater resources and 35 

increase water requests (i.e., adaptation variability of climatic factors).     36 

Keywords: Baghdad City; climatic factors; machine learning; metaheuristic algorithm; water 37 

demand model. 38 

Introduction 39 

Secure clean water availability, quantity and quality, for all inhabitants under the variability of 40 

climate change is fundamental to get a resilient environment in modern cities (Tortajada et al. 41 

2019). Freshwater scarcity has appeared as a global challenge because of the impact of climate 42 

change and socio-economic factors. The water scarcity led to an imbalance between water 43 

delivered and demand. Worldwide, more than one billion individuals have lack access to safe 44 

potable water (Ahmadi et al. 2020).  45 

       Several studies conducted in different areas have shown that the magnitude and pattern of 46 

precipitation differ as a result of climate change (Szeląg et al. 2021). The high variability of 47 

climate change imposes an increasing challenge for the management of freshwater resources 48 

(i.e., due to the reduction of freshwater availability) (Nunes Carvalho et al. 2021), which 49 

highlights the increasing need for protecting the quantity and quality of water resources 50 

particularly in sensitive zones (Lama et al. 2021). Management of municipal water planning 51 



 
 

considering a nuanced quantitative understanding of water needed is fundamental for solving 52 

the issue of water security (Capt et al. 2021). Accordingly, forecasting municipal water 53 

consumption in the future with greater precision is essential when designing water distribution 54 

networks (Pandey et al. 2021).  55 

       Iraq is located in the fastest-warming area of the world, the temperature reaches 54 ◦C that 56 

is considered one of the hottest ever measured in the Eastern Hemisphere (Salman et al. 2018). 57 

Iraq depends on Tigris and Euphrates Rivers as a primary freshwater resource, where they 58 

originate outside the Iraqi borders from Turkey. The discharge rate of these rivers has reduced 59 

to less than a third of their normal capacity because of the water policies in Turkey, Iran, and 60 

Syria. Moreover, investments in industries after 2003 (e.g., the oil industry) led to increased 61 

water consumption (Osman et al. 2017). In addition, different research studies have been 62 

conducted to assess the quality of freshwater in Iraq and reported an increase in the occurrence 63 

of several contaminants (Ewaid et al. 2018). Based on the above-mentioned problems coupled 64 

with others such as continuing wars, embargo, and terrorism led to an unclear view of the 65 

decision-maker to manage the water resources under its decrease in availability.  66 

      Estimating in advance the municipal water demand is crucial to enhance municipal water 67 

security, and monthly estimation is vital to manage dam reservoirs (Ebrahim Banihabib and 68 

Mousavi-Mirkalaei 2019). Accurate forecasting of municipal water demand will help utilities 69 

to recognise the temporal patterns of water needed to satisfy the balance between water 70 

delivered and ordered, which in turn supports the sustainability of the water system 71 

(Altunkaynak and Nigussie 2017). 72 

      De Souza Groppo et al. (2019) and Ghalehkhondabi et al. (2017) reported that forecasting 73 

of municipal water consumption progressed over the last several decades, focusing on different 74 

forms of machine learning techniques and the artificial neural network (ANN) as the most 75 



 
 

popular techniques. Xenochristou and Kapelan (2020) stated that ANN models have been 76 

applied in different research and have been proven to be effective in forecasting short-, 77 

medium-, and long-term urban water demand (Bata et al. 2020; Tiwari and Adamowski 2015; 78 

Zubaidi et al. 2020). Also, it was successfully used in eco-hydraulic and environmental 79 

engineering (Lama et al. 2021; Pandya et al. 2017; Sadeghifar et al. 2022; Zhu et al. 2022). But 80 

determining the optimum hyperparameters of the machine learning models is still considered 81 

a substantial challenge. To address this, automated machine learning approaches (such as 82 

AutoML) have been proposed to help build hybrid prediction models (He et al. 2021) without 83 

extensive knowledge of statistics and machine learning (Zöller and Huber 2021), while 84 

reducing human effort and potential bias (Hutter et al. 2019). In addition, recent studies 85 

(Archetti and Candelieri 2019; Chatzipavlis et al. 2018; Frazier 2018) have investigated the use 86 

of Bayesian Optimization (BO) to identify an optimal configuration of the hyperparameters of 87 

a machine learning algorithm within a limited number of trials, especially for long-term data. 88 

Although several automated machine learning approaches have been applied in the last decades 89 

in the area of forecasting water demand, there is still room for improvement (De Souza Groppo 90 

et al. 2019). For example, Candelieri and Archetti (2018) reported a substantial improvement 91 

in forecast precision regarding previous research studies (Candelieri 2017; Shabani et al. 2018). 92 

Furthermore, Candelieri and Archetti (2018) intend to utilise the extra forecast method in other 93 

application fields. These research studies highlight the importance of continuing the 94 

investigation of the use of new methodologies, which may offer scientific and useful insights 95 

to policymakers. Also, based on recent literature (Archetti and Candelieri 2019; Chatzipavlis 96 

et al. 2018; Frazier 2018), Bayesian Optimization (BO) can identify an optimal configuration 97 

of the hyperparameters of a machine learning algorithm within a limited number of trials, 98 

especially for long-term data. 99 



 
 

      Therefore, in this research, five nature-inspired optimisation algorithms will be used to 100 

integrate the ANN model to simulate monthly stochastic water demand data. These algorithms 101 

include: 1) Slime mould algorithm (SMA), which was proposed by Li et al. (2020) and 102 

successfully applied in feature selection (Abdel-Basset et al. 2021), wind power prediction 103 

(Yan and Wu 2020), and image segmentation problem (Abdel-Basset et al. 2020); 2) Marine 104 

predators algorithm (MPA) that was proposed by Faramarzi et al. (2020) and effectively 105 

applied in COVID-19 detection model (Abdel-Basset et al. 2020), engineering applications 106 

(Ghafil and Jármai 2020), and tensile behaviour prediction (Abd Elaziz et al. 2020); 3) Multi-107 

verse optimiser (MVO) that was efficiently utilised in solving engineering optimisation issues 108 

(Sulaiman et al. 2020), streamflow prediction modelling (Mohammadi et al. 2020), and design 109 

optimisation of a cam-follower mechanism (Abderazek et al. 2020); 4) Backtracking search 110 

algorithm (BSA), which was successfully used in finding soil parameters (Jin and Yin 2020), 111 

parameter estimation of power signals (Mehmood et al. 2020), and optimisation of photovoltaic 112 

models (Zhang et al. 2020); 5) Crow search algorithm (CSA) that was effectively applied in 113 

feature selection (Ouadfel and Abd Elaziz 2020), reinforced concrete (Sultana et al. 2020), and 114 

solving optimal control issues (Turgut et al. 2020). 115 

      Currently, urban water demand forecasting is extremely challenging for water companies 116 

that are struggling for adapting water systems specifically in terms of increasing concerns about 117 

the impact of climate change and water security. Additionally, there are very limited research 118 

studies about forecasting the stochastic signal of water needed, based on climatic factors. 119 

Consequently, considerable uncertainty still exists concerning the unexpected growth of 120 

stochastic patterns in water demand resulting from the stochastic impact of climatic factors 121 

(Zubaidi et al. 2018; Zubaidi et al. 2020). Based on the literature review, the innovation of this 122 

research is to i) Assess, for the first time in Iraq, to what extent climatic factors have driven the 123 

urban water demand. ii) Integrate the ANN model with the recently MPA algorithm (MPA-124 



 
 

ANN), which is the first application in the field of urban water demand forecasting. iii) 125 

Compare the MPA-ANN algorithm with four nature-inspired optimisation algorithms (SMA, 126 

MVO, BSA, and CSA) to increase the forecasting range and decrease the uncertainty. iv) Apply 127 

a novel methodology (data pre-processing and hybrid model) to forecast the monthly stochastic 128 

pattern of water demand. v) Offer a scientific view to decision-makers about the impact of 129 

climatic factors on water demand to satisfy sustainability in a country that faces a unique 130 

environment of climate change and water scarcity. 131 

Study area 132 

Iraq is one of the Arab countries that is located in an arid to a semi-arid area in the Middle East 133 

and its capital is Baghdad City, which is situated in the centre of Iraq, covering an area of 134 

around 204.2 km2 (Fig. S1). Baghdad City suffered from sectarian violence from 2004 to 2017 135 

that impacted the pattern and population growth rate of the city. However, Iraq had a rapid 136 

population growth rate of 2.5% in 2018 with more than 8.5 million inhabitants living in 137 

Baghdad. The Mayoralty of Baghdad City has ten water treatment projects to treat and deliver 138 

potable water from the Tigris River to various customer sectors (residential, institutional, 139 

industrial, and commercial). The predominant climate in Iraq is dry and hot to extremely hot 140 

in summer, and cold and wet in winter. Iraq faces considerable climate change that causes 141 

extreme heat waves (i.e., increase temperature degrees) and decreases the magnitude and 142 

change pattern of precipitation. Hence, the capacity of freshwater resources reduced, and the 143 

municipal water system became under stress (Chabuk et al. 2020; Ewaid et al. 2018; Zubaidi 144 

et al. 2019).  145 



 
 

Methodology  146 

The urban water demand methodology suggested here allows medium-term time-series 147 

demand forecasting to be calculated based on climatic factors. Fig. 1 shows the steps needed 148 

to build the water forecast methodology.  149 

Data of forecast model 150 

Historical data can assist to estimate and extrapolate possible impacts in the future, and the 151 

forecast will contribute to building a looked-for future (Partidário 2007). Development of the 152 

urban water demand-forecast model necessitates the availability of historical water 153 

consumption and climatic factors time series data. Accordingly, in this study, nine climatic 154 

factors are used to simulate the monthly municipal water demand (million cubic metres, 155 

MCUM) over eleven years (2003-2013) in Baghdad City, Iraq. These climatic factors were 156 

used effectively to forecast water demand with different scenarios in several previous studies 157 

in different regions. It includes maximum temperature (Tmax) (◦C), minimum temperature (Tmin) 158 

(◦C), mean temperature (Tmean) (◦C), precipitation (P) (mm), wind (W) (m/s), solar radiation 159 

(Srad) (MJ/m2), relative humidity (RH) (%), dew point temperature (Tdp) (◦C), surface pressure 160 

(Sp) (kPa).  161 

      The socio-economic factors (e.g., population) are deterministic components (Rasifaghihi et 162 

al. 2020; Zubaidi et al. 2020). Therefore, it is out of scope because this study focuses on the 163 

impact of climatic factors, which have stochastic behaviour on water consumption.   164 

Data Preprocessing  165 

Data preprocessing is a substantial phase that brings the data to such a state to enable the 166 

developed model to easily and accurately forecast the available data. It can be divided into 167 

three parts include normalisation, cleaning, and choice of best model input (Tabachnick and 168 



 
 

Fidell 2013). Haque et al. (2018) claimed that time series should be scaled down (normalised) 169 

to make the output space smoother and reduce the impact of outliers, and Cleophas and 170 

Zwinderman (2016) suggested applying natural logarithm to normalise the time series. 171 

      Data cleaning means decomposing the time series trend, seasonal (non-stationary 172 

components), stochastic (stationary component), and noise. After that, select the stochastic 173 

component only for dependent and independent factors because of the stochastic relationship 174 

between climatic factors and water consumption (Zubaidi et al. 2020). So, the pre-treatment 175 

signal approach will be used to implement this step.  176 

      The main aim of a factor choice procedure is to find the right independent factors, which 177 

have a significant effect on the dependent factor and could yield a robust forecast model (Seo 178 

et al. 2018). In this research, the tolerance technique will be used to select the model input 179 

factors by avoiding multicollinearity. Each independent factor in the best scenario should have 180 

a tolerance coefficient of more than 0.2 to ensure that there is no collinearity (Cleophas and 181 

Zwinderman 2016).  182 

Artificial neural network (ANN) 183 

ANN is currently the most common machine learning technique applied in the hydrological 184 

area, in particular, learning using a feedforward backpropagation (FFBP) structure. The FFBP 185 

is used in precisely simulating municipal water needed across various spatiotemporal scales 186 

due to its ability to map the non-linear behaviour (i.e., trend and seasonal) of water data 187 

(Shirkoohi et al. 2021; Zounemat-Kermani et al. 2020).  188 

      The Levenberg–Marquardt (LM) algorithm was used to train the ANN approach due to its 189 

the most suitable algorithms known to minimise the error of the prediction model as well as its 190 

capability to efficiently simulate any predictor/response map (Bayatvarkeshi et al. 2018; Zare 191 



 
 

Abyaneh et al. 2016). As in Zubaidi et al. (2020), the topology of the ANN can be classified 192 

into four layers of neurons including the input layer which contains the predictor factors (i.e., 193 

climatic factors), two hidden layers, and the output layer which contains the response factors 194 

(i.e., water demand) (Fig. S2). Additionally, the tansigmoidal activation function was chosen 195 

in the first and second hidden layers, whilst the linear activation function was employed in the 196 

output layer. The process of ANN training was repeated many times over an epoch (i.e., 1000 197 

iterations) until the error between the actual and simulated urban water time series data reaches 198 

its minimum. In this study, for each variable, 70% (92 out of 132) of the dataset was utilised 199 

for training, 15% (20 out of 132) as test set, and 15% (20 out of 132) for validation. Choosing 200 

these percentages of training, test, and validation datasets follow several earlier studies, e.g., 201 

(Chyad et al. 2022; Zubaidi et al. 2020; Zubaidi et al. 2020). 202 

      Indeed, the ANN performance relies on the optimisation of its hyperparameters that define 203 

the options of topology and learning of ANN. Recently, ANN models were successfully 204 

integrated by various metaheuristic algorithms to select the best values of ANN’s 205 

hyperparameters for short- and long-term. However, these combined techniques were applied 206 

in a limited number in the urban water demand field and additional research effort is required 207 

to enhance more effective and precise combined models in the future (Shirkoohi et al. 2021; 208 

Zounemat-Kermani et al. 2020).  209 

      In this study, the ANN model will be combined with the MPA algorithm to select the 210 

learning rate (Lr) and the number of neurons hidden (N1 and N2) for the first and second hidden 211 

layers instead of the trial-and-error approach. The MPA-ANN algorithm will be compared with 212 

SMA-ANN, CSA-ANN, BSA-ANN, and MVO-ANN to increase the forecasting range and 213 

decrease the uncertainty. 214 



 
 

Marine predators algorithm (MPA) 215 

The marine predator algorithm (MPA) is a novel metaheuristic optimization algorithm in which 216 

the behaviour of ocean creatures in their search for food is emulated. These creatures include 217 

sharks, monitor lizards, sunfish, equine fishes, and swordfish. In the ocean, both predators and 218 

prey strive to get their food to survive. This behaviour inspires researchers to follow this 219 

approach to get a sound algorithm in terms of its fitness. Formulation of MPA should begin by 220 

assigning an initial random set of solutions based on the search space as an initial step as 221 

illustrated in Eq. 1:  222 

𝑍 = 𝑿𝒍𝒐𝒘𝒆𝒓 + 𝑟𝑎𝑛𝑑 ∗ (𝑿𝒖𝒑𝒑𝒆𝒓 − 𝑿𝒍𝒐𝒘𝒆𝒓) (1) 

Where:  223 

      𝑿𝒍𝒐𝒘𝒆𝒓 𝑎𝑛𝑑 𝑿𝒖𝒑𝒑𝒆𝒓 are the lower and upper bond of search space, respectively, 𝑟𝑎𝑛𝑑 is a 224 

random number with a range of [0, 1]. 225 

      Two matrices must be defined in MPA because of the nature of the algorithm in which both 226 

predator and prey are looking for their own food. Therefore, both are considered search agents. 227 

These two matrices are referred to as elite (for predator) and prey matrices, respectively as 228 

shown in Eq. 2 and 3. According to the concept of the “survival of the fittest”, the top predators 229 

should be the ones with higher hunting kills and merits in the search space. As such, the Elite 230 

matrix should only include the fittest agents in the search space (predators). Then, depending 231 

on the prey positions, the Elite matrix will be updated. Regarding the Prey matrix, the 232 

dimensions of this matrix must be the same as for the Elite matrix. In this matrix, the predator 233 

updates its position based on this matrix.  234 
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(2) 

𝑷𝒓𝒆𝒚 = [

𝑿𝟏𝟏 𝑿𝟏𝟐 . 𝑿𝟏𝒅

𝑿𝟐𝟏 𝑿𝟐𝟐 . 𝑿𝟐𝒅

. . . .

𝑿𝒏𝟏 𝑿𝒏𝟐 . 𝑿𝒏𝒅

] (3) 

      where 𝑿𝟏
𝟏 represents the optimal predator vector, n is the number of search agents, and d 235 

is the number of dimensions.  236 

      In the two matrices, the positions of the predators and preys are updated according to 237 

three phases. These phases are merely dependent on the velocity difference between predator 238 

and prey. To emulate the whole life of both predator and prey in nature, a designated number 239 

of iterations should be assigned in each phase. The details of each phase will be discussed in 240 

the subsections below.  241 

Phase 1: High-velocity ratio 242 

In this phase, the movement of the predator is faster than the prey. This phase occurs in one-243 

third of the total number of iterations (i.e., 
1

3
𝑡𝑚𝑎𝑥). The step size of prey movement is updated 244 

as in the equation below: 245 

𝑆𝑖 = 𝑹𝑩⨂(𝑬𝒍𝒊𝒕𝒆𝒊 − 𝑹𝑩⨂𝑷𝒓𝒆𝒚𝒊), 𝑖 = 1,2, … , 𝑛 (4) 

𝑷𝒓𝒆𝒚𝒊 = 𝑷𝒓𝒆𝒚𝒊 + 𝑃.𝑹⨂𝑆𝑖 (5) 

      Where R is a random vector with a range of [0, 1], P = 0.5 a constant number, RB is a 246 

random vector referring to Brownian motion, ⨂ refers to element-wise multiplication process. 247 

Phase 2: Unit velocity ratio 248 



 
 

In this phase, the predator and prey are moving at the same pace. The prey movement is 249 

represented by Levy flight while the predator is represented by Brownian motion.  This phase 250 

occurs in the second third of the total iterations (i.e., 
1

3
𝑡𝑚𝑎𝑥 < 𝑡 <

2

3
𝑡𝑚𝑎𝑥). The following 251 

equations are applied to the first half of the population. 252 

𝑆𝑖 = 𝑅𝐿⨂(𝑬𝒍𝒊𝒕𝒆𝒊 − 𝑅𝐿⨂𝑷𝒓𝒆𝒚𝒊), 𝑖 = 1,2, … , 𝑛 (6) 

𝑷𝒓𝒆𝒚𝒊 = 𝑷𝒓𝒆𝒚𝒊 + 𝑃.𝑹⨂𝑆𝑖 (7) 

      Where RL represents numbers following Levey distribution. The second half of the 253 

population is subjected to the following equations: 254 

𝑆𝑖 = 𝑹𝑩⨂(𝑹𝑩⨂𝑬𝒍𝒊𝒕𝒆𝒊 − 𝑷𝒓𝒆𝒚𝑖), 𝑖 = 1,2,… , 𝑛 (8) 

𝑷𝒓𝒆𝒚𝒊 = 𝑷𝒓𝒆𝒚𝒊 + 𝑃. 𝐶𝐹⨂𝑆𝑖 , 𝐶𝐹 = (1 −
𝑡

𝑡𝑚𝑎𝑥
)
2(

𝑡
𝑡𝑚𝑎𝑥

)

 (9) 

CF represents a parameter that controls the movement step size of the predator. 255 

Phase 3: Low-velocity ratio 256 

This is the last phase of the optimization and it simulates predator movements when it is faster 257 

than the prey. It occurs in the last third of the total iterations (i.e., 
2

3
𝑡𝑚𝑎𝑥) 258 

𝑆𝑖 = 𝑅𝐿⨂(𝑅𝐿⨂ 𝑬𝒍𝒊𝒕𝒆𝒊 − 𝑷𝒓𝒆𝒚𝒊), 𝑖 = 1,2, … , 𝑛 (10) 

𝑷𝒓𝒆𝒚𝒊 = 𝑷𝒓𝒆𝒚𝒊 + 𝑃. 𝐶𝐹⨂𝑆𝑖 , 𝐶𝐹 = (1 −
𝑡

𝑡𝑚𝑎𝑥
)
2(

𝑡
𝑡𝑚𝑎𝑥

)

 

(11) 

      The detailed information of both motions (Levy and Brownian) will be furtherly discussed 259 

in subsections below: 260 

      Brownian motion: this motion is inspired by the normal distribution with a mean of zero 261 

(μ = 0) and a variance of one (σ2 = 1). To determine the Probability Density Function (PDF) 262 

corresponding to this motion at point x, the following formula should be used: 263 
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                                                   (12) 264 

      Levy flight: this is a stochastic and random step size in which Levy distribution is 265 

followed. The probability function of Levy distribution is formulated as: 266 

  
1

j jL x x


                                                                                                                                         (13) 267 

      where 
jx   is the flight length, and α is the exponent of the power-law that has a range 268 

(1,2). The probability density of the Levy distribution is formulated as: 269 

   
0

1
( , , ) exp cosLP x q qx dq  





                                                                                     (14) 270 

      where γ is the scale unit. The integral form can be used if α falls within its normal range 271 

(1, 2). As such, a Gaussian distribution is obtained if α equals 2 while Cauchy distribution 272 

can be obtained if α is 1. Higher values of x require series of expansion method as shown: 273 
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1 sin
2

( , , ) ,LP x x
x
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 




 
   

                                                                                    (15) 274 

      where Γ is a gamma function in which Γ(1 + α) equals to α!. Herein, α ranges from 0.3 to 275 

1.99. The present study follows Levy distribution to generate a random number as written 276 

below: 277 
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 1

0.05
a

x
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y
                                                                                                                   (16) 278 

where y and x are two variables with normal distribution as follows: 279 



 
 

𝑥 = 𝑁𝑜𝑟𝑚𝑎𝑙(0, 𝜎𝑥
2) and 𝑦 = 𝑁𝑜𝑟𝑚𝑎𝑙(0, 𝜎𝑦

2) where σ2 can be determined as:  280 
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                                                                                                        (17) 281 

where, σy = 1and α = 1.5. 282 

Eddy formation and effect of FAD 283 

It should be noted that in formulating MPA, the surrounding environment can play a vital role 284 

in terms of its impacts on the behaviour of prey, specifically, the eddy formulation and fish 285 

aggregating devices (FADs). This effect can be presented as:   286 

𝑷𝒓𝒆𝒚𝒊 = {
𝑷𝒓𝒆𝒚𝒊 + 𝐶𝐹[𝑿𝒎𝒊𝒏 + 𝑹⨂(𝑿𝒎𝒂𝒙 − 𝑿𝒎𝒊𝒏)]⨂𝑼̅          𝑖𝑓 𝒓 < 𝐹𝐴𝐷

𝑷𝒓𝒆𝒚𝒊 + [𝐹𝐴𝐷𝑠(1 − 𝒓) + 𝒓](𝑷𝒓𝒆𝒚𝒓𝟏 − 𝑷𝒓𝒆𝒚𝒓𝟐)      𝑖𝑓 𝒓 > 𝐹𝐴𝐷
 

(18) 

 287 

      Where r is a random value in a range of zero to 1. r1 and r2 refer to the random indices of 288 

prey matrix. FADs = 0.2 denotes the probability of FADs effect. The 𝑼̅ is a binary 289 

vector. 𝑿𝒎𝒂𝒙, 𝑿𝒎𝒊𝒏 are vectors of lower and upper bounds of the dimensions. 290 

      In the MPA technique, a memory saving should be done so that the old position of the prey 291 

can be saved to compare the fitness values pertaining to the old position of prey with other 292 

successive solutions in which prey update their positions during the simulation process.  The 293 

flowchart of the MPA-ANN algorithm is presented in Fig. S3. 294 



 
 

Performance evaluation criteria 295 

The parameters of statistical criteria indicate the accuracy of measuring prediction, so forecast 296 

error plays a significant role in the choice of an appropriate model that diminishes deviations 297 

in future forecasts (Donkor et al. 2014). It is essential to select the criteria that are proper for a 298 

particular application due to the lack of global performance criteria (Seo et al. 2018). In this 299 

study, different performance criteria were considered for assessing the performance of the 300 

model. These criteria include the coefficient of determination (R2), coefficient of efficiency 301 

(CE), nash–sutcliffe index (NSI), root mean square error (RMSE), mean absolute error (MAE), 302 

and mean bias error (MBE). The forecast technique has good accuracy and high performance 303 

to simulate the water advance time when satisfying one of these values of R2, CE more than 304 

0.9, or the values of RMSE, MAE, and MBE approach to zero (Dawson et al. 2007; Li et al. 305 

2013), as well as if the value of NSI approaches to one (Jain and Sudheer 2008).  306 

      Augmented Dickey-Fuller (ADF) test and Kwiatkowski–Phillips–Schmidt–Shin (KPSS) 307 

test are conducted to examine and determine the stochastic signal of all-time series of 308 

dependent and independent variables. 309 

Results and discussion  310 

Data preprocessing  311 

The first step in the data preprocessing is to normalise the time series of dependent and 312 

independent variables and to detect and treat the outliers as well (as mentioned in section 3.2). 313 

Figs. 2 and 3 highlight the differences between the raw data and normalised and cleaned data. 314 

      It should be noted that in the current study, the main emphasis will be oriented toward the 315 

stochastic component only (as previously mentioned in section 3.2). To develop a water 316 

demand model based on climatic factors, water consumption and climatic factors time series 317 



 
 

should first be decomposed utilising the pre-treatment signal approach. Fig. 4 shows the 318 

normalised and cleaned water time series coupled with the first four signals (trend, seasonal, 319 

stochastic, and noise). The stationarity of the stochastic signal for the all-time series is assessed 320 

and confirmed by applying ADF and KPSS tests.  321 

      Table 1 shows the difference in correlation coefficient between dependent and independent 322 

variables in raw and stochastic stages. It is obvious from this table that the values corresponding 323 

to climatic factors in stochastic are much higher than the counterpart values in the raw data 324 

such as the R between water consumption and precipitation increased from -0.535 to -0.931.  325 

      In the last section of data pre-processing, it is worth mentioning the necessity to determine 326 

the highly correlated predictors (climatic factors) and avoid multicollinearity at the same time. 327 

According to the Tolerance technique in section 3.2, the scenario of selecting the best model 328 

input is repeated several times to choose predictors with a Tolerance coefficient not less than 329 

0.2. Accordingly, Table 2 reveals that three climatic factors include P, Srad, and Tdp are 330 

determined to be the optimum scenario that has coefficients of more than 0.2 meaning that the 331 

violation of the multicollinearity assumption does not exist. 332 

 Model configuration  333 

The systematic configuration of the ANN model instead of the trial-and-error technique is 334 

necessary to build an accurate water demand prediction model. Accordingly, five hybrid 335 

metaheuristic algorithms (MVO-ANN, SMA-ANN, BSA-ANN, CSA-ANN, and MPA-ANN) 336 

were used to locate the optimal hyperparameters (Lr, N1, and N2) of the ANN model. Five 337 

swarm sizes (10, 20, 30, 40, and 50) were attempted in this paper by combining different 338 

algorithms with ANN and each swarm for each algorithm was implemented five-time to get 339 

the optimal solution e.g., MPA-ANN algorithm in Fig. S4. After that, the optimal swarm for 340 



 
 

each algorithm was selected to compare it with other swarms for the same algorithm as depicted 341 

in Fig. S5. From the figure, one could see that the best swarms are 30 for CSA-ANN, 40 for 342 

MPA-ANN, and 50 for SMA-ANN, MVO-ANN, and BSA-ANN algorithms.  343 

      Among all the implemented five hybrid metaheuristic algorithms, it was noticed that MPA-344 

ANN was superior to the other algorithms (Fig. 5). The MPA-ANN hybrid algorithm yields 345 

the least fitness function (RMSE) of 0.003993 after 42 iterations (lower iterations compared 346 

with the rest algorithms). As such, adopting MPA-ANN is feasible and warranted in the current 347 

study. So, the 40 swarms of the MPA-ANN algorithm presented Lr, N1, and N2 values of 0.213, 348 

7, and 1, respectively. 349 

Evaluation of the model performance 350 

After integrating the ANN approach by determining the optimum hyperparameters, the model 351 

runs several times to locate a better network (weights and biases) that can precisely forecast 352 

the monthly stochastic signal of water demand. Various kinds of statistical tests were applied 353 

to evaluate the capability of the ANN approach to generalise stochastic water demand data 354 

depending on climatic factors in the validation phase.  355 

      Five different statistical indicators were used to gauge the performance of the model as 356 

presented in Table 3. The CE and NSE assess the linear dependency between observed and 357 

predicted water demand, while MAE, RMSE, and MBE evaluate the non-linear dependency 358 

between observed and predicted water demand. According to the limitation in section 3.5, the 359 

ANN model offered good accuracy. 360 

      The estimated model was further validated to double-check the model power to accurately 361 

predict water consumption in the city of Baghdad. The target data of water consumption (in the 362 

x-axis) was plotted versus simulated data (in the y-axis), with a 95% confidence interval (CI) 363 



 
 

(Fig. 6). It is noticeable that the target and simulated data reveal a high level of consistency 364 

with R=0.978, which supports the good accuracy of the prediction model based on the 365 

limitation in section 3.5. 366 

      According to the utilised statistical tests, the model demonstrated a good performance to 367 

forecast water consumption data in the validation stage. 368 

Discussion 369 

The selection of the stochastic component improved the correlation coefficients to climatic 370 

factors much higher than the counterpart values in the raw data. For example, the R between 371 

water consumption and precipitation increased from -0.535 to -0.931.  Then, it was shown that 372 

the tolerance technique was very helpful in selecting the best model input among the total nine 373 

independent variables. Three climatic factors, namely P, Srad, and Tdp are selected to be the 374 

optimum scenario with tolerance coefficients of more than 0.2 which means no 375 

multicollinearity exists. 376 

When the five metaheuristic algorithms were combined to the ANN for obtaining the 377 

hyperparameters at various numbers of swarms are utilised, the optimum swarm size was 378 

different for each algorithm based on the RMSE value. The performance of the metaheuristic 379 

algorithms is then compared at these optimum swarm sizes as there was no direct guide for 380 

selecting a unique swarm size for all of them. Comparing the performance of the hybridised 381 

ANN, it was observed that the MPA-ANN algorithm provides the highest accuracy of 382 

prediction with the lowest RMSE value with relatively less iteration compared to other hybrid 383 

algorithms. Consequently, the ANN optimum hyperparameters values were determined. 384 

During the model validation process, it was shown that the model has a very good performance 385 



 
 

in forecasting future values of water consumption with a correlation coefficient value of R 386 

equals 0.978. 387 

     Wolpert and Macready (1997) mentioned that depending on the No Free Lunch (NFL) 388 

method, there is no specific theorem that can deliver the best solution compared with other 389 

theorems for all the optimisation issues. According to NFL, Faramarzi et al. (2020) develop the 390 

combined MPA theorem for guaranteeing the global solution, depending on several strategies 391 

and techniques during the optimisation. Different strategies of foraging have considerably 392 

inspired MPA in the biological interaction between the prey and predators.  Consequently, the 393 

Brownian and LF distributions were designed not only to have a systematic explorer-exploiter 394 

tendency efficiently, but also to significantly enhance the capability of search in each 395 

implementation. These permitted the MPA algorithm to precisely locate the global optima of 396 

the optimisation issues considered in this research.  397 

As a final note, since the size of the dataset used in this study can be considered relatively 398 

small, BO could have been used in conjunction with the MPA algorithm, aiming at increasing 399 

execution speed and accuracy. It is also worth noting that further methodological advances in 400 

the field of ANN may substantially increase model performance after a limited number of 401 

iterations (i.e. faster convergence time). Since the computation time was not a critical 402 

consideration in our study given that the measured data is obtained offline, we did not require 403 

to resource to the use of BO. The use of BO-based methods become more relevant when 404 

utilising online data as it involves a prolonged training time and becomes computationally 405 

expensive. The main objective of our study is to reduce the error between the measured data 406 

and the simulated one. 407 



 
 

Conclusion 408 

Precise water demand prediction has received significant attention from water companies in 409 

the last few decades due to water scarcity and the rapid growth of water consumption. A novel 410 

methodology was utilised in the present study to estimate the monthly stochastic municipal 411 

water demand based on some climatic factors by employing data over eleven years in Baghdad 412 

City. This is the first study that applies in Iraq, which is one of the hottest countries in the 413 

world. The methodology contains data preprocessing and five metaheuristic algorithms (MPA, 414 

SMA, CSA, BSA, and MVO) that are combined with an ANN model. Considering the 415 

outcomes, the data pre-processing was found to be a powerful technique that can be used to 416 

analyse and select the stochastic component of any time series by applying pre-treatment signal 417 

and to determine the best model input scenario by using tolerance. Accordingly, it provides a 418 

guide to choose suitable parameters that drive the water demand. The MPA was found to be a 419 

robust optimisation algorithm to select the best hyperparameters of the ANN approach. The 420 

developed methodology can accurately forecast the monthly stochastic signal of urban water 421 

demand based on various statistical tests. These findings are of considerable significance to 422 

water utilities to plan, review, and compare the availability of freshwater resources and increase 423 

water requests. Finally, it can be concluded that this methodology can be suggested to be 424 

applied to other cities in the surrounding countries with various scales. 425 
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Table 1. The correlation between dependent and independent factors in raw and stochastic 

stages.  

pS RH dpT radS wind P meanT minT maxT Data 

-0.523 -0.541 0.376 0.453 0.396 -0.535 0.571 0.585 0.558 Raw 

-0.869 -0.917 0.794 0.728 0.835 -0.931 0.926 0.93 0.92 Stochastic 
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Table 2. Collinearity statistics to the chosen predictors. 

Predictors Tolerance coefficient 

P 0.35 

Srad 0.23 

Tdp 0.33 

 647 

Table 3. Statistical indicators of MPA-ANN model in the validation phase. 

MBE NSE CE RMSE MAE Data 

-0.0007 0.975 0.998 0.0071 0.0057 Validation Stage 
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Fig. 1. Flowchart showing the steps required to forecast future municipal water demand. 653 
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Fig. 2. A) Monthly raw time series, B) box-plot of urban water consumption for Baghdad City. 655 
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Fig.3. A) Monthly normalised and clean time series, B) box-plot of urban water consumption. 657 
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Fig. 4. Normalised and cleaned data and the first four signals obtained by pre-treatment 659 

signal. 660 
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Fig. 5. Performance comparison among five hybrid algorithms. 662 
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Fig. 6. Target water consumption data versus simulated in the validation stage. 664 
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