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Abstract 15 

The proper management of municipal water system is essential to sustain cities and support water 16 
security of societies. Urban water estimating has always been a challenging task for managers of 17 
water utilities and policymakers. This paper applies a novel methodology that includes data pre-18 
processing and Artificial Neural Network (ANN) optimized with Backtracking Search Algorithm 19 
(BSA-ANN) to estimate monthly water demand in relation to previous water consumption. 20 
Historical data of monthly water consumption in the Gauteng Province, South Africa, for the period 21 
2007–2016, were selected for the creation and evaluation of the methodology. Data pre-processing 22 
techniques played a crucial role in the enhancing of the quality of the data before creating the 23 
prediction model. The BSA-ANN model yielded the best result with a root mean square error and a 24 
coefficient of efficiency of 0.0099 mega liters and 0.979, respectively. Also, it proved more efficient 25 
and reliable than the Crow Search Algorithm (CSA-ANN), based on the scale of error. Overall, this 26 
paper presents a new application for the hybrid model BSA-ANN that can be successfully used to 27 
predict water demand with high accuracy, in a city that heavily suffers from the impact of climate 28 
change and population growth. 29 

Keywords: Artificial Neural Network; Backtracking Search Algorithm; Municipal water demand; 30 
Climate Change; Population Growth. 31 

1. Introduction 32 

Urban water security is essential to get a resilient environment in smart cities, particularly under 33 
the stress of climate change and socio-economic factors [1,2]. Also, cities located close to water 34 
resources are driven by all kinds of industries hence, water lack is considered a classic problem for 35 
decision-makers [3,4]. Since the last century, gradual changes in freshwater resources have been 36 
observed [5]. Recent studies related to climate change have shown that it plays a key role on 37 
freshwater resources due to the potential decrease in rainfall amount [6]. Specifically, it has been 38 
shown that climate change adversely impacts  freshwater resources in the centre of cities, which in 39 
turn impacts the sustainable development of water availability and consequently,  impacts socio-40 
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economic activities [7]. In addition, several studies have shown that freshwater resources are 41 
generally adversely affected by pollution [8,9].   42 

Different regions in the world have been facing water scarcity situations, which implies that the 43 
gap between water supply and demand is likely to increase in the future. The European Environment 44 
Agency in 2010 reported that municipal water consumption is driven by complicated interactions 45 
between anthropogenic and natural system factors at multiple spatial and temporal scales [10-12]. In 46 
the Gauteng Province, the Republic of South Africa, the municipal water delivered has been less than 47 
the demand. This imbalance is due to the impact of climate change, rainfall reduction, as well as 48 
others that are human-related, such as economic expansion and population growth. The lack of 49 
freshwater resources and the increase in water demand has put pressure on the municipal water 50 
supply system. Hence the importance of using the prediction of water demands as an effective 51 
approach for optimizing the operation and management of the system, or plan for future expansion 52 
or reduction under the variability of climate and socio-economic factors [2,13,14]. 53 

House-Peters and Chang [15], Donkor, et al. [16], Ghalehkhondabi, et al. [17] and de Souza 54 
Groppo, et al. [18] stated that different methods and models have been applied in previous studies to 55 
predict municipal water demand, including traditional, Artificial Intelligence (AI), and hybrid AI 56 
models. Traditional models, such as time-series analysis and regression [19,20], were firstly employed 57 
in water demand simulation. However, traditional approaches lacked accuracy when forecasting 58 
water demand, which can cause significant issues in the operation and management of the water 59 
supply system. Additionally, the growth of the impact of climate change and urbanization cause high 60 
uncertainty, making the prediction and forecasting more complex, which also motivated researchers 61 
to further develop their models [21], including the use of AI techniques.  62 

 Data-driven techniques have a far-ranging application such as wastewater [22,23], water 63 
demand [24,25], groundwater levels [26]. Some of these techniques include  support vector machine 64 
(SVM) [27], extreme learning machine (ELM) [24], and random forest (RF)[28]. One of these AI 65 
techniques is Artificial Neural Networks (ANN) [29], which is a powerful technique that has been 66 
widely used in hydraulic modelling in recent years. It has the capability to deal with complex and 67 
nonlinear relationships between inputs and outputs [30,31]. The results obtained when applying 68 
ANN have been superior to all types of conventional model in many scenarios, for example 69 
Mouatadid and Adamowski [32] and Guo, et al. [33]. However, there are cases where conventional 70 
methods performed as well as or even better than ANN in terms of accuracy such as Li, et al. [27]. The 71 
latter can be due to a number of reasons, for example that the models falling into a local instead of the 72 
global minimum, leading to a sub-optimal solution [34], or not using the right network design or 73 
hyperparameters for training the neural network [35]. Hence, in order to avoid these drawbacks 74 
different approaches have been combined with the ANN model such as heuristic algorithms [36], and 75 
different hybrid models have been proposed.  76 

A hybrid model contains two or more techniques; one of them would work as the primary 77 
model, while others would act as pre-processing or post-processing approaches [37]. Hybrid models 78 
have been used to simulate municipal water demand using different techniques and in different 79 
scenarios, and the results have revealed that these models are robust and insightful, e.g. Altunkaynak 80 
and Nigussie [38], Seo, et al. [24], Pacchin, et al. [39], Ebrahim Banihabib and Mousavi-Mirkalaei [2] 81 
and Rasifaghihi, et al. [40].  82 

Eggimann, et al. [41] reviewed various techniques of data pre-processing that have been used for 83 
municipal water management. The reviewed article reveals that data pre-processing techniques have 84 
an important potential advantage for optimizing the performance of prediction models. It has applied 85 
successfully in different areas of study, e.g., monthly rainfall forecasting [42], irrigation water 86 
prediction [43] and urban water demand prediction [24].       87 

Various optimization techniques have been applied to solve problems in engineering 88 
applications. The optimization algorithms aim to detect optimal values for the parameters of the 89 
system under various conditions [44]. Lately, the crow search algorithm (CSA), a recently proposed 90 
metaheuristic algorithm, has been used to tackle a variety of optimization engineering issues [45]. 91 
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CSA was applied to solve optimization issues in different engineering sectors such as the 92 
optimization of energy problems [45], economic environmental dispatch [46], the selection of the 93 
optimal size of conductor in radial distribution networks [47], water demand prediction [48] and to 94 
solve constrained engineering [49]. In this study, the CSA will be hybridized with the ANN model to 95 
select the best hyperparameters of the ANN model. 96 

From the application area viewpoint, another significant consideration is that the selection of 97 
best model input that drives the dependent variable [50,51]. Several techniques were applied in 98 
different studies such principal component analysis (PCA) [52,53], variance inflation factor (VIF) 99 
[21,35] and mutual information (MI) [54,55]. In this study, mutual information technique will use to 100 
select the best scenario of model input based on several historical observed water consumption data. 101 

According to the literature review, another significant consideration is that most of the studies 102 
focus on short-term water demand estimate, while only a few deals with medium to long-term 103 
prediction. Lately, various studies such as [33,56-58] have employed historical data of water 104 
consumption as a single input in their short-term prediction models.  105 

However, a challenge still exists for managers of water utilities and policymakers due to the 106 
uncertainty to gain knowledge about the capacity of water system under a potential rapid growth in 107 
urban water demand as a consequence of socio-economic, demographic and climate factors. Also, as 108 
mentioned previously, only a few studies have considered medium-term municipal water demand 109 
based on previous water consumption. Therefore, these aforementioned problems motivated us to 110 
propose an approach that would refine those existing approached, providing managers with 111 
scientific, more accurate insights about the future water demand, reducing the uncertainty. 112 

The main objectives of this research study are: 113 
1- To improve the quality of the data and to choose the best model input scenario by applying data 114 

pre-processing techniques. 115 
2- To select the optimum values of ANN hyperparameters by using Backtracking Search Algorithm 116 

and Artificial Neural Network (BSA-ANN) technique. Also, to evaluate how BSA-ANN 117 
performs in comparison with a CSA-ANN algorithm. 118 

3- To assess the performance of the novel methodology to predict medium-term municipal water 119 
demand in relation to some lags time of observed water consumption. 120 

4- To reduce the uncertainty for decision-makers by using a novel and refined model, which 121 
involves data pre-processing methods (to improve the quality of data and select the model 122 
input), and employing a more sophisticated approach for model prediction (using combined 123 
techniques to enhance the accuracy of results, and the stand-alone ANN to confirm the results of 124 
the hybrid model). 125 
Based on the literature review, the research is thought to be the first study that used this novel 126 

combined methodology, which include data pre-processing and automated machine learning to 127 
forecast municipal water demand depend on some lags’ values of water consumption as model input. 128 
As such, it is considering the effect of all climate, demographic and socio-economic factors.  129 

2. Study Area and Data Collection 130 

Gauteng province is the economic powerhouse of the Republic of South Africa, which has eight 131 
metropolitan municipalities. This city faced water stress that resulted from climate change, the 132 
average annual rainfall was below the world’s average of 363mm, and from human relation such as 133 
population growth and economic expansion. More than 60% of the population living in the urban 134 
regions in South Africa, and Gauteng province receives most migrants in this country. For this city, it 135 
is anticipated that the water demand would outstrip the water delivered by 2025. For more than a 136 
century, the company Rand Water has delivered municipal water to more than 9 million people and 137 
different industries in the Gauteng province, with more than 3000 km of pipeline. The lack of 138 
freshwater resources in the Gauteng province has motivated Rand Water to increase storage capacity 139 
by constructing new dams and water transfer schemes from several rivers of different regions such as 140 
the Vaal, Tugela and Orange rivers [13,59,60]. 141 
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Historical monthly data of municipal water consumption (in Mega liters, ML) over ten years 142 
from 2007 to 2016 were provided by Rand Water and used to build and assess the model. Two pre-143 
tests were applied to these data by SPSS (24) package, one of them being Komarov-Semenove test to 144 
assess normality and the other one being a box-whisker test to check for outliers. The results showed 145 
that these data are normally distributed, the value of significance is 0.2 > 0.05, and data are clean from 146 
outliers, data lies between ±1.5 IQR. These results increase the reliability on the quality of data 147 
received from the company. Figure 1 shows the municipal water consumption: a) monthly time 148 
series, b) boxplot for Rand Water company. 149 

 150 

  
a b 

Figure 1. Municipal water consumption: a) monthly time series, b) boxplot for Rand Water company. 

3. Methodology  151 

The proposed methodology can be divided into four parts, including data pre-processing, 152 
Artificial Neural Network, Backtracking Search Algorithm and model evaluation. 153 

3.1. Data Pre-processing 154 

Pre-processing the data has a significant effect on the quality of the model produced. At this 155 
stage, we perform three steps: normalisation, cleaning and selection of best model inputs. Data 156 
normalisation aims to have the same range of values for each of the inputs to the ANN model and to 157 
make the time series normally or close to normally distributed, as it would assist the stable 158 
convergence of the weights and biases as well as reduce the impact of noise [61]. In this research, 159 
natural logarithm was used for normalizing the data because it has the ability to minimize the effects 160 
of the multicollinearity between independent variables [37].  161 

The aim of the cleaning approach is to detect and remove the noise from the time series to 162 
increase the regression coefficient and decrease the scale of error [21]. All the time series have 163 
different components of noise, and the pre-treatment signal is one of the best approaches that 164 
denoises the raw time series by decomposing them into different components [62]. This approach can 165 
be applied for both linear and nonlinear time series with different sample size -short, medium and 166 
long-term. It does not need any assumption of statistical criteria such as normality of error, linearity 167 
and stationery of the series [62,63]. More details about the pre-treatment technique can be found in 168 
Golyandina and Zhigljavsky [64]. This technique has been applied in several research areas, including 169 
predicting stochastic processes [65], hydrology [66] and economics [63]. 170 

The selection of the best model input represents one of the most important stages in data pre-171 
processing in general, which is also the case when modelling the forecast of water demand [31]. In 172 
this research, the choice of the best explanatory variables is performed by applying Mutual 173 
Information (MI) technique. It is used for measuring the statistical correlation between the original 174 
time series and the lagged components. This technique enables the selection of the highest correlation 175 
components which have the greater mutual information [67]. 176 
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 177 

3.2. Artificial Neural Network (ANN)  178 

ANN is a method inspired by the way the human brain processes data, and emulates its 179 
functionality by using similar operations and connectivity as a biological neural system [29,30,68]. 180 
Recently, ANN models have been widely utilised in water resources and hydrology applications 181 
because of its ability to extract complex nonlinear relationships, which exist within the hydrology 182 
data [30,31].  183 

In this study, the multilayer perceptron (MLP) is applied to simulate municipal water demand. 184 
MLP has been frequently and successfully used for the forecast of water resources and hydrology 185 
applications. Its architecture and hyperparameters (as shown in Table 1) is layered as a feedforward 186 
neural network (FFNN) and can be trained using learning algorithms such as the backpropagation of 187 
the error (BP) [69] and the Levenberg-Marquardt (LM) [70,71]. It has been reported that the latter is 188 
better at limiting the errors of the ANN [30,31].  As in Zubaidi et al., [37,48], the structure of the MLP 189 
contains four layers, the first one being the input layer, which has the model inputs representing 190 
water consumption lags, followed by two hidden layers and one output layer, which has the water 191 
demand. Two types of activation functions have been used: a tan-sigmoidal function in the hidden 192 
layers as in Yonaba, et al. [72], and a linear activation function in the output layer for covering the 193 
positive values of urban water demand as successfully used in Zubaidi, et al. [21]. The ANN model 194 
was integrated by using backtracking search optimization algorithm (BSA-ANN) to locate the 195 
optimum hidden neurons’ number and optimal coefficient of learning rate that maximizes the ability 196 
and reliability of the ANN technique [36,73]. The training process of the ANN model is repeated a 197 
large number of times over an epoch (i.e., 1000 iterations) until the error between the observed and 198 
simulated urban water reaches its minimum. The data were split randomly into three sets 70% for 199 
training, 15% for testing and 15% for validation, as previously conducted by Zubaidi, et al. [21] and 200 
Zubaidi, et al. [35]. As in Gharghan, et al. [36], cross-validation was used to ensure the generalization 201 
capabilities of the model and avoid overfitting, and the stopping criterion for training was done using 202 
the root mean square error (RMSE) as an objective function (i.e., error not more than the value of 203 
RMSE in the testing stage). This procedure was also used successfully by Zubaidi et al., [37,48]. 204 

 205 
Table 1. The ANN hyperparameters. 

Parameter Type 

Number of inputs Estimated by Mutual Information (MI) technique  

Number of outputs Our target, which is water demand 

Number of hidden layers Two hidden layers  

Number of neurons in hidden layer N1 Estimated by metaheuristic algorithm  

Number of neurons in hidden layer N2 Estimated by metaheuristic algorithm 

Learning rate coefficient Estimated by metaheuristic algorithm 

Learning algorithm Levenberg-Marquardt (LM) 

Activation function in hidden layer N1 Tansigmoidal activation function  

Activation function in hidden layer N2 Linear activation function  

Number of epochs 1000 iterations 

3.3. Backtracking Search Algorithm (BSA) 206 

The BSA algorithm is an evolutionary algorithm, proposed by Civicioglu to remedy the complex 207 
problems of numerical optimization, e.g. highly nonlinear, non-differentiable, constrained design 208 
problems and multimodality [73-75]. BSA has been broadly applied to tackle different types of 209 
engineering optimization issues, e.g. numerical function optimization [74], constrained engineering 210 
optimization problems [75], wireless sensor [36], and home energy management [44]. It can be sorted 211 
into five stages: initialization, selection-I, mutation, crossover, and selection-II [75]. 212 
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Initialization: this stage initializes primary population P and history population oldP with 213 
Equations. (1) and (2), consecutive: 214 

𝑃𝑖,𝑗 ~ U(𝑙𝑜𝑤𝑗 , 𝑢𝑝𝑗  )   (1) 

𝑜𝑙𝑑𝑃𝑖,𝑗 ~ U(𝑙𝑜𝑤𝑗 , 𝑢𝑝𝑗  ) (2) 

Where, 215 
i= 1, 2, 3, …., N; N is the population size; U is the uniform distribution. 216 
j= 1, 2, 3… D; D is the problem dimension.  217 
BSA’s Selection-I: in this stage, BSA algorithm re-chooses a new oldP to calculate the search 218 

direction through the ‘if-then’ rule in Equation (3) and the permuting’s function in Equation (4) is 219 
utilized to change randomly individuals order in oldP. This stage confirms that the BSA algorithm 220 
has memory. 221 

𝑜𝑙𝑑𝑃 ≔ 𝑃 ⁄ 𝑎, 𝑏 ~ U(0,1 ) 
(3) 

𝑜𝑙𝑑𝑃 ≔ 𝑝𝑒𝑟𝑚𝑢𝑡𝑖𝑛𝑔(𝑜𝑙𝑑𝑃) 
(4) 

Mutation: in this stage, BSA algorithm generates the initial trail population form M based on 222 
Equation (5)  223 

𝑀 = 𝑃 + 𝐹. (𝑜𝑙𝑑𝑃 − 𝑃) 
(5) 

 Where, F is the responsible for controlling the amplitude of the search direction matrix. It can be 224 
obtained by applying Equation (6), where randn is a standard normal random number. 225 

F = 3 ∙ randn 
(6) 

In this study, we used F=3 as was used before in Gharghan, et al. [36]. 226 
Crossover: the last formula of trial population T is generated at this stage. The value of T is 227 

limited within the acceptable boundary limitations. The unique crossover phase of BSA algorithm 228 
contains two primary phases. The first stage is to adjust a binary integer-valued matrix (map) with 229 
size N * D via utilizing map(1: N,1:D) = 1. Then, two various crossover strategies are randomly 230 
conducted to set the map, as presented in Equation (7). The second stage is used for updating T based 231 
on the defined map utilizing Equation (8). 232 

𝑚𝑎𝑝𝑖,𝑢 = 0 {
𝑢 = ⌈𝑚𝑖𝑥𝑟𝑎𝑡𝑒 ∙ 𝑟𝑎𝑛𝑑 ∙ 𝐷⌉, 𝑖𝑓 𝑐 < 𝑑 𝑐, 𝑑 ~U(0,1),⁄

𝑢 = 𝑟𝑎𝑛𝑑𝑖(𝐷),                             𝑒𝑙𝑠𝑒,                                  
 (7) 

𝑇𝑖,𝑗 = {
𝑀𝑖,𝑗 , 𝑖𝑓 𝑚𝑎𝑝𝑖,𝑗 = 0,                                   

𝑃𝑖,𝑗 ,                             𝑒𝑙𝑠𝑒,                                  
 (8) 

Where, 233 
mixrate: is the mix rate parameter, which controls the elements’ number that will be altered. 234 
A boundary control mechanism is conducted via applying Equation (9), for avoiding the 235 

individuals in T exceeding the search space limits. 236 
𝑇𝑖,𝑗 = 𝑟𝑎𝑛𝑑 ∙ (𝑢𝑝𝑗 − 𝑙𝑜𝑤𝑗) + 𝑙𝑜𝑤𝑗 , 𝑖𝑓 

(𝑇𝑖,𝑗 < 𝑙𝑜𝑤𝑗) 𝑜𝑟(𝑇𝑖,𝑗 > 𝑢𝑝𝑗). 

(9) 

Selection-II: this is the final stage of the BSA algorithm, which evaluates the fitness values of the 237 
trial population T and population P, and updates the individuals of P according to a greedy selection, 238 
as presented in Equation (10). 239 

𝑃𝑖 = {
𝑇𝑖 , if  𝑓𝑖𝑡𝑛𝑒𝑠𝑠(𝑇𝑖 ) < 𝑓𝑖𝑡𝑛𝑒𝑠𝑠(𝑃𝑖),                                   
𝑃𝑖,,           𝑒𝑙𝑠𝑒.                                                                                  

 (10) 

More details about the BSA algorithm can be found in Civicioglu [73]. In our research study, we 240 
have hybridized BSA with ANN to choose the best hyperparameters of the ANN model, as opposed 241 
to using trial and error as it may not be reliable. As briefly mentioned earlier, these ANN 242 
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hyperparameters include the neurons’ number in both hidden layers and the coefficient of the 243 
learning rate.  244 

 245 

3.4. Evaluation Model 246 

Several standard statistical measures can be employed to appraise the performance of the 247 
methodology in the validation stage for the selection of the best model that has a minimum mean 248 
error to decrease deviations in future forecasts [16]. In this research five criteria were utilised to 249 
examine the accuracy of the forecast model: root mean square error (RMSE), mean absolute error 250 
(MAE), mean absolute relative error (MARE), coefficient of efficiency (CE) and coefficient of 251 
determination (R2). Also, four tests were applied to assess residual data include Kolmogorov-252 
Smirnov, Shapiro-Wilk, Augmented Dickey–Fuller (ADF) and Kwiatkowski–Phillips–Schmidt–Shin 253 
(KPSS) test. 254 

4. Results and Discussion 255 

4.1. Development Model Input 256 

After normalizing the data by applying the natural logarithm, the pre-treatment signal technique 257 
was employed to obtain the time series data of urban water consumption without noise (this was 258 
performed by decomposing the original time series into three signals). Figure 2 shows the original 259 
time series (top row), the new time series (second row) and two noise signals (third and fourth rows). 260 
Data pre-processing enhance the correlation coefficients between dependent and independents 261 
variables for different lags of monthly water consumption e.g. the correlation coefficient of raw data 262 
of Lag1 increased significantly from 0.63 to 0.96. The correlation coefficients for the first four lags are 263 
0.96, 0.91, 0.84 and 0.78, respectively.   264 

 265 

 

Figure 2. Original time series (top row) and three components 

of water consumption obtained by the pre-treatment signal 

technique (2nd to 4th rows). 2nd row represents the new time 

series, while 3rd and 4th represent noise. 

 266 
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Two boxplots' shapes for normalised and denoised data are shown in Figure 3. It can be seen that 267 
there are no outlier’s data for both shapes. Additionally, both shapes almost have the same median, 268 
the upper and lower quartiles, while the upper and lower extremes of the denoised data are less than 269 
those for normalised data because of noise elimination. Moreover, the shape of denoised data is near 270 
to normal distribution pattern, better than the normalised data shape.   271 

 272 

 
Figure 3. The box plot distribution for normalised, and denoised data. 

 273 
Further to this, the MI technique was applied to select the best scenario of model input for the 274 

prediction model as shown in Figure 4. According to the literature, the first minimum of average 275 
mutual information (AMI) is selected as the time lag [76,77]. Based on the figure of AMI, four lags 276 
(Lag1 to Lag4) of monthly historical water consumption were used to simulate future water demand.  277 

 278 

 

Figure 4. AMI function of the water consumption time series. 

 279 
Tabachnick and Fidell [61] indicated that the relationship between the size’s sample (N) and the 280 

independent variables’ number should comply with Equation (14). 281 

N≥ 50+8m (14) 

m = number of predictors variables. 282 
In this research, the cases’ number is N = 116, which is more than the 82 needed, which indicates 283 

compliance with the proposition from Tabachnick and Fidell [61]. 284 
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4.2. Application Hybrid Heuristic Algorithms-ANN Techniques 285 

After performing data pre-processing methods, data were split into three datasets include 286 
training, testing and validation as presented in Table 2. The table tabulates four statistical standards 287 
for all data sets include maximum consumption (Cmax), minimum consumption (Cmin), mean 288 
consumption (Cmean), standard deviation (Cstd) and total sample size for each data set (T). The 289 
outcomes show that all sets mostly have the same style. 290 

Table 2. The statistical parameters for training, testing, and validation sets. 291 

Water Consumption (ML) Cmax Cmin Cmean CStd T 

Training set 11.81 11.60 11.70 0.062 82 

Testing set 11.82 11.61 11.71 0.070 17 

Validation set 11.79 11.61 11.72 0.057 17 

 292 
Five sizes of the population (10, 20, 30, 40 and 50) were used to simulate the hybrid BSA-ANN 293 

algorithm in MATLAB toolbox, to locate the optimal population size that offers best learning rate 294 
coefficient and number of neurons in both hidden layers of the ANN technique.  Figure 5a shows that 295 
the population size of 40 offers the optimal answer with less fitness function equal to (0.00608×10-3) 296 
after 149 iterations. A CSA-ANN algorithm is applied as well to attain the same objective for the same 297 
populations’ size and to then to be compared with the outcomes from the hybrid BSA-ANN 298 
algorithm, as revealed in Figure 3b. Figure 5b reveals that the population size of 40 gives the optimal 299 
solution with less fitness function equal to (0.006497×10-3) after 181 iterations. The result gained from 300 
the BSA-ANN algorithm was associated with these from the CSA-ANN algorithm to compare with 301 
the new technique. The hybrid BSA-ANN model has a lower RMSE (with less iteration) in 302 
comparison to the CAS-ANN. The results of BSA algorithm have been employed to enhance the ANN 303 
capabilities in the modeling of municipal water demand. Accordingly, the hyperparameters of the 304 
ANN obtained from the best population size were: learning rate coefficient: 0.3954, number of 305 
neurons:5 and 2 for hidden layer one and two, respectively. 306 

 307 

  

a b 

Figure 5. Metaheuristic algorithms simulation for five population size. 

 308 
The ANN technique was design to estimate the effect of using BSA algorithm in conjunction with 309 

the ANN, and to validate the results of the combined model. Consequently, extensively trial and error 310 
technique's scenarios were implemented to determine the ANN model's factors (LR, N1, and N2) that 311 
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offer the optimal precise of prediction. Accordingly, the outcomes present that the values of LR, N1, 312 
and N2 are 0.3, 7, and 10, respectively. 313 

To explore the capability and accuracy of the combined model for generalization, the coefficient 314 
of determination (R2) was estimated between the observed and simulated water demand for training, 315 
testing and validation sets, as presented in Figure 6. The measured municipal water consumption is 316 
indicated in the x-axis and plotted against the simulated water demand in the y-axis. Also, the dataset 317 
of the testing stage was employed to plot a regression calibration curve between the observed versus 318 
simulated water consumption time series, with a 95% confidence interval (CI). The figure shows that 319 
there are neither any irregular data nor a particular pattern trend, and high levels of consistency 320 
between the observed and simulated data. Also, the hybrid model was significant R2= 0.97, 0.97, and 321 
0.98 for training, testing, and validation datasets, respectively. These results support the capabilities 322 
of the BSA-ANN model to accurately generalise unseen data (i.e. dataset that was not considered 323 
before in training and testing stages). 324 

 325 

  

 
Figure 6. The performance of combined model in training, testing and validation stages. 

 326 
The coefficient of determination (R2) criterion was utilised again to evaluate the accuracy of ANN 327 

model (stand-alone) and its capability for generalizing data in the validation stage, as presented in 328 
Figure 7. The figure shows that R2= 0.98, 0.96 and 0.95 for training, testing and validation datasets. 329 
Although the values of coefficient of determinations for training and testing stages are slightly bigger 330 
than the value of the same criteria for validation stage, this is not considered a problem, as was also 331 
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discussed in Dawson, et al. [78], . Hence, we can confidently say that this statistical criterion supports 332 
the increased generalization capabilities of the BSA-ANN model compared with the ANN model 333 
(stand-alone).  334 
 335 

  

 
Figure 7. The performance of ANN (stand-alone) model in training, testing and validation stages. 

 336 
Also, the performance of the BSA-ANN and ANN model (stand-alone) was further examined by 337 

using four different statistical indicators RMSE, MAE, MARE and CE for training, testing and 338 
validation stages. These indicators are a valuable criterion for examining the nonlinear time series as 339 
municipal water time series as presented in Table 3. According to Dawson, et al. [78], the results of 340 
these four statistical criteria indicate the ability of the models, BSA-ANN and ANN (stand-alone), to 341 
simulate accurately municipal water demand. But, the capability of BSA-ANN model for generalizing 342 
data in the validation stage is still better than ANN (stand-alone) model (e.g. the value of CE=0.979 for 343 
BSA-ANN is better than CE=0.931 for ANN (stand-alone) model. 344 

 345 
Table 3 Performance evaluation for validation data stage. 

Model Data Stage RMSE MAE MARE CE 

BSA-ANN 

Training 0.0091 0.0075 0.00064 0.999 

Testing 0.0090 0.0079 0.00044 0.972 

Validation 0.0099 0.0071 0.00040 0.979 

ANN Training 0.0078 0.0058 0.00049 1.0 
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(stand-alone) Testing 0.0138 0.0112 0.00063 0.935 

Validation 0.0181 0.0129 0.00072 0.931 

 346 
Furthermore, a graphical test was utilised to examine the capability of the combined model to 347 

generalize water data time series in the validation stage. Figure 8 presents the observed water data in 348 
blue colour and predicted water data by BSA-ANN and ANN (stand-alone) in red and black colour, 349 
respectively. It can be noticed that the predicted data by BSA-ANN follow the trend and periodicity 350 
of the observed data, and it is very close to the observed data based on the scale of error better than 351 
data that predicted by ANN (stand-alone). Therefore, these results support the generalization 352 
capability of the combined model to forecast the municipal water time series compare with the ANN 353 
(stand-alone) model.   354 

  355 

 

Figure 8. Presents the comparison between observed and predicted data 

for BSA-ANN and ANN (stand-alone) for the validation stage. 

 356 
Moreover, Kolmogorov-Smirnov and Shapiro-Wilk tests agree that the residual data are 357 

normally distributed base on the significant values. In addition, the residual data are stationary based 358 
on ADF and KPSS tests. Accordingly, the values of residual data and its pattern distribution confirm 359 
the capabilities of the combined model. 360 

Based on the above outcomes of statistical criteria, data analysis and graphical test, it can be 361 
concluded that: 1) data pre-processing techniques have been applied successfully for enhancing the 362 
quality of the data and to choose the best model input scenario. 2) BSA-ANN algorithm is more 363 
efficient and accurate than CSA-ANN algorithm, based on the fitness function value (RMSE), to locate 364 
the optimum hyperparameters of the ANN model. 3) The hybrid model BSA-ANN can accurately 365 
generalise data in validation stage compared with the ANN (stand-alone) model based on several 366 
statistical criteria. 4) The combined technique, data pre-processing and BSA-ANN algorithm, has 367 
proven to be robust for the prediction of water demand with less error, in relation to previous water 368 
consumption. 5) Using metaheuristic algorithms to detect best hyperparameters of the ANN method 369 
and comparing the outcomes of the hybrid technique with the results of the ANN (stand-alone) 370 
model leads to increasing the validation of the proposed methodology and reduce the uncertainty. 371 

Finally, this study highlights the importance and suitability of data pre-processing and hybrid 372 
model in predicting medium-term urban water demand for the city that suffers from variability in 373 
climate and socio-economic factors such the Gauteng province. Rand Water can take benefit from the 374 
outcomes of this research to evolve effective plans for optimised system operation and ensure 375 
balancing between water delivered and need under good quality and sufficient pressure. Also, this 376 
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combined technique was considered all the factors that affect water demand include socio-economic, 377 
strategic, demographic and climatic. So, it is recommended to be applied in different cities that suffer 378 
from the impact of the same factors. 379 

5. Conclusion  380 

In this manuscript, the performance of novel combined models that include pre-treatment signal, 381 
mutual information and BSA-ANN technique were assessed to estimate monthly municipal water 382 
needed based on previous water consumption. Historical data of monthly water consumption over 383 
ten years from the Gauteng province, South Africa, was utilised to build and evaluate the predictive 384 
model developed. The outcomes show that data pre-processing is a crucial step to enhance the quality 385 
of the data before feeding it into the model by denoising time series and selecting the best scenario of 386 
model input. Also, the hybrid BSA-ANN algorithm can be successfully applied to select optimum 387 
ANN hyperparameters, and it outperforms CSA-ANN algorithm based on fitness function (RMSE). In 388 
addition, the ANN model (stand-alone) was used to decrease the uncertainty by validating the 389 
outcomes of the hybrid model (BSA-ANN). Moreover, the results confirm the appropriateness of the 390 
combined model to forecast water demand depend on historical water consumption of a city under 391 
variability in climate and socio-economic factors such the Gauteng province. The advantages of the 392 
proposed methodology are: easy to implemented, high accuracy with less uncertainty, time-saving, 393 
and applicable when the climate and socio-economic factors are missing (i.e. lost the information of 394 
factors that drive water demand). Hence, these results can accurately inform Rand Water (i.e. its 395 
decision-makers and managers), helping this water utility company to better manage the existing 396 
municipal water system and to better plan for extensions in response to the increasing consumption, 397 
which would lead to better service and better management of resources in the Gauteng province. 398 
Therefore, taking into consideration all the benefits mentioned before, we recommend that additional 399 
studies are conducted in other regions with similar or different climatic and socio-economic factors, 400 
or regions that lack climatic and socio-economic factors but have reliable water consumption data. 401 
Also, based on the outputs of the current study, we recommend exploring the use of different 402 
techniques of data pre-processing and several hybrid models in the simulation of municipal water 403 
demand depend on historical water consumption for other cities in the world due to there is no global 404 
method that surpasses all the models for prediction water demand. 405 
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