36 research outputs found

    Effect of Time-Dependent Chloride Profile and Temperature Variation on Chloride Diffusion in Concrete

    Get PDF
    Reinforcement corrosion due to chlorides diffusion is one of the main problems in reinforced concrete structures exposed to certain environments. The diffusion rate is function of chloride surface concentration, concrete temperature, humidity, composition and microstructure. The intruded chlorides are partially chemically bound by the concrete and it is the unbound or free chloride which upon exceeding a defined threshold initiates corrosion. The time to corrosion initiation depends on the above variables; therefore, it is important to model their spatial and temporal variations in a manner that will yield a realistic estimate of the actual initiation period. In this study, the chloride surface concentration and temperature temporal variations are approximated in several ways to gauge the sensitivity of the chloride diffusion kinetics to them. Temperature profiles with constant 6-hours, daily, monthly, seasonally and yearly variations are used to approximate the actual temperature variation recorded for Toronto, Canada in a typical year. The surface chloride concentration is assumed either constant or allowed to vary monthly according to the reported values for Toronto. It is discovered that due to the limited temperature range encountered even in cold regions like Toronto, the diffusion kinetics is not very sensitive to the temperature approximation method, but it is more sensitive to the way the surface chloride variation is approximated. For structures subjected to deicing salt applications, assuming constant seasonal temperature and monthly chloride variation in the analysis may yield a realistic estimate of the time to corrosion initiation and thus the prediction of the life-time of the structure

    LATERAL BUCKLING PROBLEM: MODIFICATIONS OF STANDARD GFRP SECTIONS SHAPE AND PROPORTIONS

    Get PDF
    In this paper the first results of a comprehensive numerical investigation regarding the flexural–torsional response of pultruded slender beams is presented. The goal of the research is to propose GFRP standard cross-sections of such proportions and shapes that would possess improved strength, stability and deformational characteristics compared to the corresponding existing sections whose proportions are generally based on standard steel sections. As GFRP sections are thin-walled but are significantly less stiff than similar steel sections, the study focuses on enhancing their appropriate stiffness and buckling strength. The novel and efficient numerical model used in this investigation was developed by the writers and can be used to trace the complete pre-buckling geometrically nonlinear response of any GFRP or steel thin-walled member with open or closed cross-section. The bucking load is computed by the asymptotic value of the load-displacement curve. It is demonstrated that due to their unsuitable proportions, available standard GFRP sections do not have adequate stiffness and buckling strength. Consequently, relative to T-cross section only recommendations are made for new sectional proportions and modified shape. The superiority of the proposed section is quantified by an efficiency factor, defined in terms of ratio of strength gain to material volume increase

    A COMPARISON BETWEEN COMPOSITE AND STEEL BEAMS IN THE FLEXURAL-TORSIONAL EQUILIBRIUM PROBLEM

    Get PDF
    In this paper the first results of a comprehensive numerical investigation regarding the flexural–torsional response of pultruded slender beams is presented. The goal of the re-search is to propose GFRP standard cross-sections of such proportions and shapes that would possess improved strength, stability and deformational characteristics compared to the corresponding existing sections whose proportions are generally based on stan-dard steel sections. As GFRP sections are thin-walled but are significantly less stiff than similar steel sections, the study focuses on enhancing their appropriate stiffness and buckling strength. The novel and efficient numerical model used in this investigation was developed by the writers and can be used to trace the complete pre-buckling geo-metrically nonlinear response of any GFRP or steel thin-walled member with open or closed cross-section. The bucking load is computed by the asymptotic value of the load-displacement curve. It is demonstrated that due to their unsuitable proportions, available standard GFRP sections do not have adequate stiffness and buckling strength. Consequently, relative to I- cross section only recommendations are made for new sectional proportions and modified shape. The superiority of the proposed section is quantified by an efficiency factor, defined in terms of ratio of strength gain to material volume increase

    Nonlinear finite element analysis of strength and durability of reinforced concrete and composite structures

    Get PDF
    The finite element method has emerged as the most powerful and versatile numerical method for solving a wide range of physical problems in science and engineering. Today a large number of commercial programs exist that can be used to solve diverse problems in structural and fluid mechanics, heat transfer and many other phenomena. However, certain critical problems related to durability of concrete structures, especially corrosion of reinforcement, cannot be readily solved using the available software. This paper presents two finite element formulations, developed by the writers, one dealing with the nonlinear analysis of composite concrete-steel bridges, and the other with the durability of concrete structures, with emphasis on the corrosion of reinforcement. The validity and accuracy of the proposed models are demonstrated by comparing their results with appropriate experimental data

    FRP-RC/PC members subjected to combined actions

    Get PDF
    The capacity provisions of conventional Reinforced Concrete (RC) and Prestressed Concrete (PC) beams subjected to combined action of torsion, shear and flexure are well known and stated by international/national codes. Similar provisions lack for concrete members containing Fibre Reinforced Polymer (FRP) reinforcements. In general, there is paucity of research on the treatment of torsion combined with other stress resultants for FRP-RC/PC members. In this paper the theoretical method proposed by the Canadian standard CSA S806 for FRP-RC/PC structures is presented. The critical issues, related to this topic, such as the appropriate strength and inclination of the diagonal struts and failure criteria are critically analyzed and addressed. In order to assess the reliability of this study a comparison between available experimental data regarding FRP-RC/PC beams subjected to combined actions and their corresponding theoretical provisions derived by the CSA S806 standard is shown. Furthermore, another approach, available in literature, which is based on the space truss model, is examined and used for comparison in order to evaluate the theoretical provisions offered by this model against the tests value of the set of the beams analyzed in this study. Based on the critical analysis of the results, it can be highlighted that the CSA method is able to conservatively predict the capacity of these beams

    Pseudo-ductile Failure of Adhesively Joined GFRP Beam-Column Connections:An Experimental and Numerical Investigation

    Get PDF
    Glass Fiber Reinforced Polymer (GFRP) I-beam-column adhesively bonded connections are tested under combined bending and shear. The special feature of the novel connection is the wrapping of the seat angles at the connection by a carbonfiber reinforced polymer (CFRP) fabric wrap. The wrap is primarily intended to alter the connection failure mode from brittle to pseudo-ductile, thus providing adequate warning of impending failure. Four moment resisting connection configurations are tested, including the reference configuration without the wrap. It is observed that the connection failure is initiated by the fracture of the adhesive, but the provision of the wrap, together with a steelseat angle, alters the failure mode from brittle to pseudoductile. The post-peak load deformation is achieved without a large drop in the resistance of the connection. On other hand, the connection with the wrapping and a GFRP seat angle can also change the failure mode to pseudo-ductile, but it could not be done without a large reduction in theconnectionresistanceafterthepeakload

    Review of Concrete Structures Strengthened with FRP Against Impact Loading

    Get PDF
    Recent global terrorism activities and threats imposed prominent danger to the public civil infrastructure, and thus blast and impact resistance design of structures has become an indispensable requirement in the design processes. Fiber reinforced polymer (FRP) can be used as an excellent material to improve the blast and impact resistance of structures. Up to now most studies concentrate on blast-resistance of FRP strengthened structures. The number of studies about impact resistance of structures strengthened with FRP is very limited and the findings in these studies are controversial. Since structures under blast and impact loadings do not necessarily behave the same, it also is important to understand the performance of FRP strengthened structures subjected to impact loads. This study aims to provide an overview of the impact resistance of structures strengthened with FRP, which include reinforced concrete (RC) beams, RC slabs, RC columns and masonry walls. This study also reviews the dynamic properties of FRP materials. Although some issues still need to be investigated and clarified, it would be suggested that FRP can be used to strengthen and protect structures against impact events or terrorism activities. © 2016 Institution of Structural Engineers

    Development Length of GFRP Rebar Based on Non-uniform Bond Stress

    No full text
    Due to the assumption of uniform bond stress, the development length of FRP bars by design standards can be unnecessarily long and difficult to provide in practice. Hence, the bond stress distribution and required development length of a GFRP rebar is investigated. Four beam-bond specimens, two following RILEM specifications and two based on a procedure by ACI are tested to evaluate the effect of test method on bond strength. Ten pullout tests are also performed using the same bar. The two test methods yield similar results, but the ACI test is easier to perform. The bond stress distribution in the beams is highly nonlinear but in the pullout tests approaches uniformity. The actual development length is found to be 50% to 250% less than that required by the foregoing standards. Consequently, a new equation is proposed based on the logistic growth function to model the non-uniform bond stress distribution and estimate the required development length.The accepted manuscript in pdf format is listed with the files at the bottom of this page. The presentation of the authors' names and (or) special characters in the title of the manuscript may differ slightly between what is listed on this page and what is listed in the pdf file of the accepted manuscript; that in the pdf file of the accepted manuscript is what was submitted by the author
    corecore