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Abstract  
In this paper the first results of a comprehensive numerical investigation regarding the flexural–torsional 
response of pultruded slender beams is presented. The goal of the research is to propose GFRP standard cross-
sections of such proportions and shapes that would possess improved strength, stability and deformational 
characteristics compared to the corresponding existing sections whose proportions are generally based on 
standard steel sections. As GFRP sections are thin-walled but are significantly less stiff than similar steel 
sections, the study focuses on enhancing their appropriate stiffness and buckling strength. The novel and 
efficient numerical model used in this investigation was developed by the writers and can be used to trace the 
complete pre-buckling geometrically nonlinear response of any GFRP or steel thin-walled member with open or 
closed cross-section. The bucking load is computed by the asymptotic value of the load-displacement curve. It is 
demonstrated that due to their unsuitable proportions, available standard GFRP sections do not have adequate 
stiffness and buckling strength. Consequently, relative to T-cross section only recommendations are made for 
new sectional proportions and modified shape. The superiority of the proposed section is quantified by an 
efficiency factor, defined in terms of ratio of strength gain to material volume increase.    
 

Keywords:   Analysis, bending, buckling, cross-section, fibre-reinforced polymer and torsion.  

1. Introduction  
Historically, Fibre-Reinforced-Polymer (FRP) pultruded profiles were designed by the 
pultrusion industry and were intended for low-stress applications (cooling towers, water and 
waste-water treatment plants, etc.), taking into account their principal features such as their 
high stiffness and strength-to-weight ratio, magnetic transparency, corrosion resistance, and 
an effective manufacturing process. However, since the late nineties, FRP pultruded profiles 
reinforced with glass fibres (GFRP) have been used in civil engineering as primary structural 
members, complementing other conventional materials such as steel, concrete, and wood in 
pedestrian  and highway bridges, railway lines ([1]-[3]), and in the construction of full-
composite structures. One of the first, as well as one of the most famous, full-composite 
structures was the five-storey GFRP Eyecatcher Building erected in Basel, Switzerland in 
1998 for the Swiss Building Fair. It is also the tallest FRP structure constructed until now.  
In order to make pultruded members more appealing to the construction industry, most 
manufacturers produce profiles that imitate standard structural steel members (e.g. I-, H-, C-, 
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and angle profiles), but in the field of composite research, the belief that these “steel-like” 
profiles do not represent the optimum geometry for composite sections is gradually gaining 
currency. Considering that standard engineering guidelines developed for conventional 
materials are not applicable to FRP shapes, several technical documents dealing with the 
design equations and methods, material properties, and safety factors for pultruded elements 
have been developed or under development [4] -[7]. 
In these documents it is specified that the pultruded elements could be considered as linear 
elastic, homogeneous, and transversely isotropic in the case of aligned fibres, with the plane 
of isotropy being normal to the longitudinal axis (i.e. the axis of pultrusion). Their mechanical 
behaviour is  strongly affected by warping strains as well as shear deformations, which, 
coupled with the time-dependent nature of these materials, govern their complex mechanical 
behaviour. 
The lateral buckling behaviour of FRP beams has been widely investigated in the literature 
from the theoretical, numerical, and experimental points of view. Recent experimental studies 
by Mosallam et al. [8] and Feo et al. [9] showed that for composite pultruded beams the 
hypothesis of rigid web–flange junctions, or connections,  need to be changed,  primarily due 
to the anisotropy of the constitutive behaviour of the material, but also due to the higher local 
resin concentration at the web–flange junctions, which is believed to reduce the flexural 
rigidity of the cross-section.  
Based on the latter finding, the writers developed an innovative mechanical model to predict 
the nonlinear pre-buckling behaviour of generic composite beams with open or closed cross 
section [10]-[12], taking into account the deformability of the connections joining the panels 
or plates that form the cross-section. The main assumption is that the cross section be viewed 
as an assemblage of thin rectangular elements connected to each other at their ends.  
The aim of the present paper is to identify, via detailed analysis, appropriate geometric 
parameters for GFRP T- section only that can be judiciously selected to improve its overall 
resistance, stability and serviceability when subjected to flexural–torsional actions. The 
improvements can be judged by comparing the response of the GFRP section with enhanced 
properties to those of similar existing section available commercially.   
 

2. Main features of the proposed mechanical model 
The main idea is that typically the cross section of a thin-walled member is composed of a 
defined number of thin rectangular panels mutually interconnected at a defined number of 
internal points or nodes (internal connections), as illustrated in Figure 1. Each panel is 
assumed to be thin and is modelled using a full second-order deformable beam theory, 
accounting for both the warping effects and possible displacement discontinuities at the 
connections of each panel with the adjoining panels. Furthermore, the hypothesis of small 
strain and moderate rotation is adopted in the formulation.  
In view of the above assumptions, the displacement field of each panel is given by  
 

( ) ( ) ( )( )( ) ( ) ( ) ( )
3, ,i i i i

o ou x y z u z z y yϕ= − −  (1.a) 

( ) ( ) ( )( )( ) ( ) ( ) ( )
3 0, ,i i i i

ov x y z v z z x xϕ= − +  (1.b) 

( ) ( ) ( ) ( ) ( ) ( ) ( )( ) , , i i ii
h h sw x y z w z f s z nϕ= −  (1.c) 
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Figure 1. (a) Typical beam; (b) cross section; (c) positions of the internal connections; (d) generic i-panel. 

 
In Eqs. (1.a–1.c) the quantities ( )i

ou  and ( )i
ov  represent the out-of-plane and in-plane 

displacement components of the point ( )( ) ( ) ( )
0 0,i i i

oP x y≡  along the x and y axes, respectively 

(Figure 1d) and ( )
3
iϕ  denotes the twisting rotation of the panel.  The latter point usually 

coincides with the centroid of the panel. In Eq. (1.c) the displacement component ( )iw  (axial 

or lengthwise panel displacement) is modelled as the sum of two parts: the first is a linear 
combination of the kinematic unknowns, ( )i

hw , which represent the axial displacements of the 

points, ( )i
hP , lying on the mid-line of the panel, and having interpolating polynomials ( )i

hf ; the 

second is displacement due to flexural rotation, ( )i
sϕ , about the normal, n, to the mid-line of 

the panel. Note that the polynomials ( )i
hf  are functions of the coordinate s running along the 

middle line of the panel. 
In [12] it was shown that in order to adequately simulate the warping behaviour of the cross-
section, the polynomials( )i

hf must be at least quadratic, which requires three points or nodes 

along each panel cross-section in order to determine the coefficients of the quadratic function. 
Accordingly, one node is located at each end of the panel and a third one is placed at its mid 
point. These nodes are denoted by ( )

1
iP , ( )

3
iP , ( )

2
iP , respectively, in Figure 2. 
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Figure 2. Generic i-panel. 
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Based on the above, the warping displacement is written as follows: 
 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
1 1 2 2 3 3

i i i i i i i i
h hw z f s w z f s w z f s w z f s= + +  (2) 

 

where ( )i
hw ( 1,2,3h = ) represent the tangential displacements at nodes ( )i

hP  while ( )i
hf  

(h=1,2,3) are expressed as follows: 
 

( ) ( ) ( ) 2
1 1 11i i if a s b s= + +  (3.a) 

( ) ( ) ( ) 2
2 2 2

i i if a s b s= +
 (3.b) 

( ) ( ) ( ) 2
3 3 3

i i if a s b s= +
 (3.c) 

 
In Eqs. (3.a–c) the coefficients of the polynomials terms are given by: 
  

( ) ( )2 2( ) ( )
2 3( )

1

i i

i
s s

a
−

=
∆

,
( ) ( )

( ) 3 2
1

i i
i s s

b
−=
∆

, ( )2( )
3( )

2

i

i
s

a =
∆

,
( )

( ) 3
2

i
i s

b = −
∆

, ( )2( )
2( )

3

i

i
s

a = −
∆

,

( ) ( )
( )

2 2( ) ( ) ( ) ( ) ( )2
3 2 3 3 2,  

i
i i i i is

b s s s s= ∆ = −
∆

. 
(4.a-g) 

 
In Eqs. (4.a–g) the symbols ( )

2
is  and ( )

3
is  are the tangential displacements of nodes ( )

2
iP and 

( )
3

iP , respectively. 

 
2.2 Internal connections 
The internal connections of the panels are modelled by means of four nonlinear continuously 
distributed springs, which can capture the relative translational and rotational movements at 
the connections of adjoining panels. The generalized force-displacement relationship of the 
springs is illustrated in Figure 3. The symbols in this figure are defined with reference to the 
cross-sections in Figure 2 as follows:  
 
-  σ is the generalized force or action, which, depending on the spring considered, represents 

the web–flange force per unit area along the x-axis ( uσ ), the y-axis ( vσ ), and the z-axis 

( wσ ), or the web–flange torsional moment per unit length around the z-axis ( 3µ ); 

- d is the displacement discontinuity associated with the generalized force σ; it represents the 

web–flange relative displacement along the x-axis (du ), the y-axis (dv ), and the z-axis 

( dw ), or the web–flange relative  twist around the z-axis (
3

dϕ ); 

- σy and σu are, respectively,  the maximum elastic and ultimate values of the considered 
web–flange  forces;  

- dy and du are , respectively,  the maximum elastic and ultimate values of the relative 
displacement associated with generalized force being considered; 

- K1 and K2 are , respectively, the elastic and post-elastic stiffness constants of the springs. 
Mosallam et al. [9] have shown an innovative procedure for how to determine these 
constants experimentally.  
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Figure 3. Generic relationship between web–flange relative displacement, d, and the 

associate generalized force σ. 
 
2.3 Stress–strain relationship 
Assuming linear elasticity, the Second Piola–Kirchhoff stress tensor and the Green strain 
tensor for each panel are related as: 
 

[ ] [ ]
13

13 23 33 23 13 23 33

0 0

,  ,  0 0 2 ,  2E ,  E

0 0

T T

L

G

S S S G E

E

 
 =  
  

 (5) 

 

In Eq. (5), symbols LE , 13G , and 23G  denote, respectively, Young’s modulus along the 

member axis and the shear moduli within the (x–z) and (y–z) planes (Figure 1). Strain 

components 13E , 23E , and 33E , the only non-zero components of the Green–Lagrange strain 

tensor, are expressed as  

( ) ( )( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
13 0 3 1, 0 3 3 3 1, 3,

1 1
  

2 2
i i i i i i i i i i i i i i i

o h h s o h k h k

dn
E u y y w g v x x w w g g

dx
ϕ ϕ ϕ ϕ ϕ   ′ ′ ′ ′ ′≅ − − + − + + − +    

 (6.a) 

( ) ( )( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
23 0 3 2, 0 3 3 3 2, 3,

1 1
 

2 2
i i i i i i i i i i i i i i i

o h h s o h k h k

dn
E v x x w g u y y w w g g

dy
ϕ ϕ ϕ ϕ ϕ 

 ′ ′ ′ ′ ′≅ + − + − + − + − +   
 

(6.b) 

( ) ( ) ( ) ( ) ( ){
( ) ( ) ( ) ( ) }

2 2 2 2 2( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
33 3, 0 0 3

2( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
0 3 0 3 3, 3, 3,

1

2

2 2 1 δ  

i i i i i i i i
h h s o o

i i i i i i i i i i i i
o o h h hk h k h k

E w g n u v x x y y

u y y v x x w g w w g g

ϕ ϕ

ϕ ϕ

 ′ ′ ′ ′ ′ ≅ − + + + − + − +    

′ ′ ′ ′ ′ ′ ′− − + − + + −
 

(6.c) 

 
where functions ( )

1 ( )i
,hg s , ( )

2 ( )i
,hg s , and ( )

3 ( )i
,hg s  have the form 

 
( )

( ) ( ) ( )
1, ( ) 2

i
i i ih
h h h

f ds ds
g s a b

x dx dx

∂= = +
∂  (7.a) 

( )
( ) ( ) ( )
2, ( ) 2

i
i i ih
h h h

f ds ds
g s a b

y dy dy

∂= = +
∂  (7.b) 

( ) ( )
3, ( ) ( )i i

h hg s f s=  (7.c) 
 



Page 6 of 11 
 

It is worth pointing out that despite the expectation that 13 23, E E , and 33E  being the only non-

zero strain components, it emerges that 11E , 12E , and 22E  are also not zero. This is due to the 

simplified form of the displacement field. The simplified kinematic relationships adopted in 
Eq. (1) were evaluated as appropriate for practical purposes. However, as demonstrated later, 

the strain 11 12, E E , and 22E can be ignored without loss of accuracy. 

 
2.4 Variational formulation 
For formulating the finite element model necessary to perform numerical analysis,  the 
equilibrium problem was recast using the principle of virtual displacement as follows: 
 

int con extL L Lδ δ δ+ =
 (8) 

 
The symbols intLδ , conLδ and extLδ represent the virtual work of internal stresses that accounts 

for second-order terms, the work done by internal connections, and the work done by the 
external forces, respectively.  
Longitudinally the member is modelled by a two node finite element with cubic Hermitian 
shape functions. More details of the formulation, including the expressions for the generalised 
displacement, stress, and strain fields, are given in [12]. The reliability and accuracy of the 
proposed numerical model are also demonstrated in the latter reference. 
 

3. Numerical results 
The aim is to analyse the response of a T- members having the common cross-sectional 
shapes available on the market, and to recommend typical changes to its proportions or shape, 
with the goal of enhancing its strength, stiffness and/or stability.  Based on the results of the 
presented analyses, improved cross-sectional proportions or alternative efficient modified 
shapes are proposed. It should be pointed out that the stability of a thin-walled section 
depends on a large number of material and geometric properties, and loading configuration of 
the member. The geometric properties include the section torsional, polar, and warping 
constants as well as its cross-sectional area, second moments of area, and the member 
unsupported length.  These parameters cannot be optimized for every loading and geometric 
scenario using only one section type or proportions; nevertheless, it is possible, as shown in 
this investigation, to significantly improve their resistance by judicious choices of section 
shape and proportions.    
T- cross section member with cantilever support conditions is investigated. The member is 
subjected to eccentrically applied concentrated load as shown in Figure 4. The mechanical 
properties of the analyzed steel and GFRP sections are reported in Table 1, while the 
geometric characteristics of each cross section are summarised in Table 2, and the symbols in 
Table 2 are identified in Figure 4. For simplicity, the member length is taken as 3000 mm for 
all the investigated cases.  
In each case the member is discretized by a mesh comprising 500 two-node finite elements. 
As demonstrated in [12], this mesh is deemed satisfactory for the purpose of the current 
analyses. 
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Figure 4. Geometry, loading and boundary conditions investigated. 

 

Table 1. Steel and GFRP mechanical properties 
Steel mechanical properties    

Young’s modulus of elasticity E MPa 210,000 

Shear modulus of elasticity G MPa 81,000 

Yield strength fy MPa 275 

Ultimate strength  fu MPa 430 

    

GFRP mechanical properties    

Young’s modulus of elasticity(*)  E0° MPa 23,000 

Shear modulus of elasticity Gxz, Gyz MPa 3,000 

Flexural strength(*) fb,0° MPa 240 

Tensile strength(*) ft,0° MPa 240 

Compressive strength(*)  fc,0° MPa 240 

Shear strength fτ MPa 25 
      (*) pulling direction during pultrusion process (axis of pultrusion) 

 
Table 2. Cross section shapes and relative geometrical parameters 
Cross section shape T   
    

Geometrical dimensions   measure unit value 

Flange panel width B mm 80.0 

Flange panel thickness s mm 9.0 

Web panel thickness s mm 9.0 

Whole cross section height H mm 80 

 

The results for the cantilever beam-columns, including the magnitude of the critical applied 
load, Fcrit, are reported in Table 3. The table lists the selected commercially available standard 
steel and GFRP sections and their dimensions, followed by a number of analogous GFRP 
shapes with modified dimensions, and finally a similar but more efficient shape proposed 
based on the results of the current analyses.  The standard sections are simply termed Steel 
and GFRP while the modified GFRP sections are dubbed “GFRPi”. Note, in the table for each 
cross section the dimensions that are altered, compared to the corresponding standard section 
dimensions, are underlined. Finally, in each case the ratios of the volume and critical load of 
each modified section to the volume and critical load of the corresponding standard section 
are computed and shown in columns 5 and 4 of Table 3. Section efficiency factor η, defined 
as the ratio of increase in volume to increase in critical load, is indicated in the last column of 
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the table. Note that η values greater than one indicate more efficient section than the 
corresponding standard section. 
 

Table 3 – Cantilever beam-columns: cross sectional shape, dimensions and relative buckling loads 
Case 

studied 
Cross-section 

Dimensions [mm]  
Loadcrit   iL Lcrit crit

GFRP GFRP/  iV VGFRP GFRP/  η  

(T-section) 

 (H x B x s) Fcrit  [kN]  [-]  [-]  [-] 
Steel (80 x 80 x 9) 2.40 - - - 
GFRP (80 x 80 x 9) 0.34 1.00 1.00 1.00 
GFRP1 (80 x 80 x 18) 0.65 1.91 1.88 1.02 
GFRP2 (160 x 80 x 9) 0.40 1.17 2.94 0.40 
GFRP3 (80 x 80 x 27) 0.90 2.65 2.64 1.00 
GFRP4 (120 x 80 x 13.5) 0.80 2.35 1.85 1.27 
GFRP5 (80x 120 x 9) 0.40 1.17 1.26 0.92 
GFRP6 (80 x 120 x 13.5) 0.80 2.35 1.85 1.27 
GFRP7 (proposed new shape, 

see Figure 5) 
1.80 5.29 3.22 1.64 

 
In Figures 5 the load versus displacement curves  are reported.  In Figure 5a the applied load 
F-lateral displacement, u, curve for point P on the flange, and  in Figure 5b the load F- 
vertical displacement, v, curve for point O on the web are  plotted. The above displacements 
are at the free end of the cantilever.  
Notice the nearly fivefold increase in Fcrit and the threefold increase in stiffness of the 
proposed new T-shape compared to the standard section. The new section uses approximately 
three times more material than the standard section but has over five times higher critical 
load, with η=1.64.  
The modified section GFRP4 uses instead two times more material than the standard section 
but has two times higher critical load, hence its η=1.27. Furthermore, compared to modified 
section GFRP4, the proposed section contains 74% more material, but its critical load is 
225% higher. In fact, it is worth noting that Fcrit for the new shape is 75% of the critical load 
of the companion steel section while Fcrit for the GFRP4 shape is 33% of that of steel section. 
This is possible because the new cross section presents an innovative shape where the 
torsional and flexural stiffness are both increased in a balanced manner. Note that Figure 5a 
and 5b may be also used to examine the effects of certain changes in the standard T-section 
dimensions on its deformation, stiffness and stability. 

It is worth noting that compared to the standard steel section, in each case the worst response, 
in terms of strength and stiffness, is exhibited by the companion standard GFRP section, 
which supports the argument that the current commercially available GFRP sections are not 
properly shaped or proportioned, at least from the perspective of lateral-torsional stability. 
If the intent of the current selection of GFRP standard sections is to mimic analogous steel 
sections, they fall dramatically short of having comparable performance insofar as buckling 
strength and stiffness are concerned. 
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Figure 5a. Case A1 – Load F  versus lateral displacement, u, at point P on the flange 
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Figure 5b. Case A1 – Load F versus vertical displacements, v,  at point O on the web 

 
For example, the numerical results presented in Figures 5 show that in the case of the T-cross 
section, deformation control is governed by the vertical displacement v, which appears to be 
about 10 times higher than the horizontal displacement u. The global buckling is instead 
governed, as expected, by the second moment of area about the minor axis of bending. Thus, 
the numerical results lead one to state that with reference to the standard GFRP T-section: 
 

- increasing thickness, s, decreased vertical displacement, v , but increased  both the 
buckling load (approximately 165% when  s is increased threefold) and horizontal 
displacement, u,  although the increase in u has marginal effect on the deflection limit.  
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- increasing the width, B, 150% increased the buckling load by 17%  while neither 
displacement, u, nor and v changed significantly; 

- increasing the height, H, 200% increased the buckling load 17% and reduced the 
vertical displacement, v, dramatically as it approached the corresponding displacement 
of the companion steel section. 

The other modification to the standard cross sectional dimensions investigated in this study 
involves changes to more than one geometric parameter (s and B, or s and H) concurrently, 
which result in varying degrees of improvement in the section performance as shown in 
Figures 5. Overall, increasing thickness s may be the best choice. Alternatively, if possible, it 
is advantageous to modify the cross-sectional shape as illustrated by the shape GFRP7 in the 
current study.  

4. Conclusions 
In this paper the first results of a comprehensive numerical investigation is performed to 
analyze the deformations and stability of pultruded slender beams subjected to combined 
axial–flexural–torsional actions and how changes in the dimensions and shape of their cross-
sections affect their stability and stiffness. The overall objective was to identify several GFRP 
cross section geometries by modifying the current standard GFRP shapes available on the 
market (i.e. those similar to steel cross section shapes), in order to improve their mechanical 
behaviour. The section analyzed was pultruded slender T- shapes. Cantilever beam-columns 
(with torsional restraint at the supports) were analyzed subjected to eccentric gravity 
concentrated load, producing bending shear and torsion. The numerical analyses were 
performed using a new numerical model, developed by the authors. The model is capable of 
predicting the nonlinear pre-buckling behaviour of generic composite beam-columns with 
open or closed cross-section of arbitrary shape. The numerical results lead to the following 
general conclusions irrespective of the loading and boundary conditions  

- standard GFRP T-section is not a suitable choice for full scale FRP structures; 
however, increasing the flange thickness thicknesses (e,g. doubling) and making the 
width of the flange, B, and the height, H, of the whole cross section equal, increases 
the buckling load by only  20% but causes  noticeable reduction in the relevant 
deformations; 

 

Part of the goal of this investigation is to initiate discussion about the right shape and 
proportions of GFRP pultruded cross-sections. We believe that section shapes and dimensions 
should be selected based on the mechanical properties of FRP and not by mimicking steel 
sections. Therefore, we hope that this would eventually lead to radical changes and rethinking 
in the production of pultruded composite sections, giving them their appropriate place within 
the constellation of structural shapes available to structural designers.  
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