79 research outputs found

    Study of decagonal approximant and γ-brass-type compounds in Al-Cr-Fe thin films

    Get PDF
    This paper reports the preparation conditions and structure characteristics of Al-Cr-Fe very thin films (10-30 nm) obtained by the flash evaporation technique. The films are either amorphous or crystallized, depending on the thickness of the sample and temperature of the substrate. Annealing of amorphous films leads to crystallization of intermetallic phases that are all linked with quasicrystals. In particular, we have identified by transmission electron microscopy the following structures: body-centered-cubic (bcc) γ-brass phase, monoclinic λ-Al13(Cr,Fe)4 phase, and orthorhombic O1-phase, all of them already observed in this system, together with four new structures, i.e., a face-centered-cubic (fcc) γ-brass phase (superstructure of the bcc phase), monoclinic λ′-phase (related to the λ-phase) and two orthorhombic phases (1/1/; 1/1) and (1/0; 2/1) approximants of the decagonal phase). In this study, we point out the occurrence of twin defects of the λ-Al13(Cr,Fe)4 phase. Films prepared directly in the crystalline state comprise the O1 approximant. Electron energy loss spectroscopy measurements show that all films are not oxidized except for the presence of a native oxide layer that forms in ambient atmosphere with a thickness that cannot exceed 0.3 nm. Optical properties were investigated and show that films need to be large enough (>30 nm) to reproduce the properties of bulk alloys. Finally, contact angle wetting measurements reveal that the presence of such films on a substrate, even at very low thickness, considerably decreases the wetting behavior by wate

    Phosphate dynamics in an urban sewer: A case study of Nancy, France

    Get PDF
    International audienceThe nature of phosphate phases present in suspended matter, biofilm, and sediment of Greater Nancy sewer system, was investigated over a period of two years. The phosphate speciation was determined by two approaches: a direct identification of phosphorus mineral phases was conducted by Transmission Electron Microscopy (TEM) coupled with Energy Dispersive X-ray Spectroscopy (EDXS), whereas a chemical extraction of samples provided an estimate of phosphorus pools defined by the fractionation scheme. Quantitative analysis of 1340 individual particles allowed to draw a picture of phosphate species distributions along the sewer system and over time. Amorphous Ca-phosphates (brushite, whitlockite, octacalcium phosphate, Mg-brushite, hydroxyapatite and carbapatite) are ubiquitous although brushite dominated upstream, and octacalcium phosphate and apatite prevailed downstream and in sediments. Al-Ca-phosphate minerals such as foggite, bearthite, gatumbaite, and crandallite appeared downstream and in biofilms. Changes in Ca-phosphate phase distribution were related to phase transformations from brushite to hydroxyapatite that were shown to be kinetically driven. The restriction of Al-Ca-phosphates to downstream of the sewer system was most probably related to the lower pHs measured at these sites. The pH dependency was confirmed by stability calculations. TEM examination of chemical extraction residues revealed the presence of neoformed Al-Ca-phosphate species that invalidate the fractionation scheme. On the other hand, it confirmed that phosphate phases may undergo significant geochemical changes over a short time scale

    THE IRON SPIN TEXTURE IN ANNEALED AMORPHOUS Fe/Tb MULTI-LAYERS

    Get PDF
    Fe/Tb multilayers have been obtained by vacuum evaporation with Tb-layer thickness fixed to 40Å and amorphous Fe-layer thickness fixed to 19Å. 57Fe-Mössbauer spectrometry was used to obtain information on the structure and the spin texture of the multilayers before and after annealing at 530K for different durations of the annealing. The Mössbauer results indicate that the Perpendicular Magnetic Anisotropy (PMA) was stabilised and reinforced after annealing.Fe/Tb multilayers have been obtained by vacuum evaporation with Tb-layer thickness fixed to 40Å and amorphous Fe-layer thickness fixed to 19Å. 57Fe-Mössbauer spectrometry was used to obtain information on the structure and the spin texture of the multilayers before and after annealing at 530K for different durations of the annealing. The Mössbauer results indicate that the Perpendicular Magnetic Anisotropy (PMA) was stabilised and reinforced after annealing

    Synthesis of nanocrystals by discharges in liquid nitrogen from Si-Sn sintered electrode

    Get PDF
    International audienceThe synthesis feasibility of silicon-tin nanocrystals by discharges in liquid nitrogen is studied using a Si-10 at % Sn sintered electrode. Time-resolved optical emission spectroscopy shows that silicon and tin melt almost simultaneously. The presence of both vapours does not lead to the synthesis of alloyed nanocrystals but to the synthesis of separate nanocrystals of silicon and tin with average sizes of 10 nm. These nanocrystals are transformed into amorphous silicon oxide (am-SiO2) and beta-SnO2 by air oxidation, after evaporation of the liquid nitrogen. The synthesis of an am-Si0.95Sn0.05 phase around large silicon crystals (similar to 500 nm) decorated by beta-Sn spheroids is achieved if the current flowing through electrodes is high enough. When the sintered electrode is hit by powerful discharges, some grains are heated and tin diffuses in the large silicon crystals. Next, these grains are shelled and fall into the dielectric liquid

    Nanostructures design by plasma afterglow-assisted oxidation of iron–copper thin films

    Get PDF
    International audienceOxidizing thin films made of Fe-Cu alloy with an Ar-O 2 micro-afterglow operated at atmospheric pressure shows remarkable growth processes. The presence of iron in copper up to about 50% leads to the synthesis of CuO nanostructures (nanowalls, nanotowers and nanowires). Nanotowers show the presence of an amorphous phase trapped between crystalline domains. Beyond 50%, Fe 2 O 3 iron nano-blades are also found. CuO nanowires as small as 5 nm in diameter can be synthesized. Thanks to the presence of patterned domains induced by buckling, it was possible to show that the stress level decreases when the iron content in the alloy increases. Iron blades grow from the inner Fe 2 O 3 layer through the overlying CuO if it is thin enough

    Synthesis of RuO 2 nanowires from Ru thin films by atmospheric pressure micro-post-discharge

    Get PDF
    International audienceOxidation by a micro-post-discharge at atmospheric pressure of thin films of ruthenium deposited on fused silica by pressure-modulated magnetron sputtering is studied. Single-crystalline RuO 2 nanowires are obtained for the first time with a diffusion process over large areas. Nanowires grow typically at temperatures below 550-600 K, provided the level of stress is high enough to fragment grains in sub-grains with sizes between 30 and 50 nm. Because of the alternation of dense and porous layers forming the coating, inward diffusion of vacancies leads to no patent Kirkendall's effect, pores being distributed over the whole coating thickness and not mainly at the interface with the substrate. The centre of the treatment being heated at temperatures higher than 900 K, gaseous RuO 4 is formed, leading to an evaporated area. At its edge, a ring of microcrystals is formed, likely by a CVD mechanism

    Microstructural evolution of a low-alloy steel / nickel superalloy dissimilar metal weld during post-weld heat treatment

    Get PDF
    The microstructural evolution of a dissimilar metal weld (DMW) obtained by narrow-gap gas tungsten arc welding (NG-GTAW) was investigated after it was subjected to a post-weld heat treatment (PWHT). The case studied here is a joint between low-alloy steel pipes and a stainless steel steam generator using a nickel based alloy as filler material. The fusion boundary that was the focus of this work was that between the low-alloy steel (2.25Cr-1Mo) and the nickel alloy (alloy 82). The difference in matrix phase and chemical composition between the two alloys leads to a large difference in chemical potential for carbon, which is mobile at the PWHT temperature. A number of advanced characterization techniques were used to assess the gradient of composition, hardness and microstructures across the fusion line, both as welded and after PWHT. This complete analysis permits to highlight and understand the main microstructural changes occurring during the PWHT
    corecore