238 research outputs found

    A new duality approach to elasticity

    No full text
    International audienceThe displacement-traction problem of three-dimensional linearized elasticity can be posed as three different minimization problems, depending on whether the displacement vector field, or the stress tensor field, or the strain tensor field, is the unknown. The objective of this paper is to put these three different formulations of the same problem in a new perspective, by means of Legendre-Fenchel duality theory. More specifically, we show that both the displacement and strain formulations can be viewed as Legendre-Fenchel dual problems to the stress formulation. We also show that each corresponding Lagrangian has a saddle-point, thus fully justifying this new duality approach to elasticity

    Nonlinear Donati compatibility conditions for the nonlinear Kirchhoff -von K arm an-Love plate theory

    No full text
    International audienceLinear Donati compatibility conditions guarantee that the components of symmetric tensor fields are those of linearized change of metric or linearized change of curvature tensor fields associated with the displacement vector field arising in a linearly elastic structure when it is subjected to applied forces. These compatibility conditions take the form of variational equations with divergence-free tensor fields as test-functions, by contrast with Saint-Venant compatibility conditions, which take the form of systems of partial differential equations. In this paper, we identify and justify nonlinear Donati compatibility conditions that apply to a nonlinearly elastic plate modeled by the Kirchhoff-von K'arm'an-Love theory

    Nonlinear Donati compatibility conditions and the intrinsic approach for nonlinearly elastic plates

    No full text
    Linear Donati compatibility conditions guarantee that the components of symmetric tensor fields are those of linearized change of metric or linearized change of curvature tensor fields associated with the displacement vector field arising in a linearly elastic structure when it is subjected to applied forces. These compatibility conditions take the form of variational equations with divergence-free tensor fields as test-functions, by contrast with Saint-Venant compatibility conditions, which take the form of systems of partial differential equations. In this paper, we identify and justify nonlinear Donati compatibility conditions that apply to a nonlinearly elastic plate modeled by the Kirchhoff-von K'arm'an-Love theory. These conditions, which to the authors' best knowledge constitute a first example of nonlinear Donati compatibility conditions, in turn allow to recast the classical approach to this nonlinear plate theory, where the unknown is the position of the deformed middle surface of the plate, into the intrinsic approach, where the change of metric and change of curvature tensor fields of the deformed middle surface of the plate are the only unknowns. The intrinsic approach thus provides a direct way to compute the stress resultants and the stress couples inside the deformed plate, often the unknowns of major interest in computational mechanics

    An asymptotic plate model for magneto-electro-thermo-elastic sensors and actuators

    No full text
    International audienceWe present an asymptotic two-dimensional plate model for linear magneto-electro-thermo-elastic sensors and actuators, under the hypotheses of anisotropy and homogeneity. Four different boundary conditions pertaining to electromagnetic quantities are considered, leading to four different models: the sensor-actuator model, the actuator-sensor model, the actuator model and the sensor model. We validate the obtained two-dimensional models by proving weak convergence results. Each of the four plate problems turns out to be decoupled into a flexural problem, involving the transversal displacement of the plate, and a certain partially or totally coupled membrane problem

    On the commutability of homogenization and linearization in finite elasticity

    Full text link
    We study non-convex elastic energy functionals associated to (spatially) periodic, frame indifferent energy densities with a single non-degenerate energy well at SO(n). Under the assumption that the energy density admits a quadratic Taylor expansion at identity, we prove that the Gamma-limits associated to homogenization and linearization commute. Moreover, we show that the homogenized energy density, which is determined by a multi-cell homogenization formula, has a quadratic Taylor expansion with a quadratic term that is given by the homogenization of the quadratic term associated to the linearization of the initial energy density
    • …
    corecore