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Abstract. This paper deals with a singular perturbation problem re-
lated to the relaxed exact controllability of a thin shell and its membrane
approximation. We point out the subspaces in which we can construct
control functions and which allow us to look at the asymptotic limit.
Since the problem depends on the geometry of the shell and the selected
boundary control action, specific results for elastic hemispherical shells
are given.

1. Introduction

The shell vibrations can be described by the system of differential equa-
tions {

vtt + Aεv = 0 in Ω × (0, T )
Bεv = 0 on ∂Ω × (0, T )

(1.1)

and the initial conditions v(0) = v0, vt(0) = v1; where Aε = A0 + εA1 is a
linear, self-adjoint Douglas-Nirenberg elliptic operator of mixed order which
depends on the shell thinness parameter ε ≥ 0 and Bε = {B0,

√
εB1} is a

system of normal boundary conditions. The operator Aε is associated with
a symmetric sesquilinear form

aε(u,v) = a0(u,v) + εa1(u,v), (1.2)

which we assume continuous and coercive in the Hilbert space V ⊂ H.
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We refer to the papers of Grubb and Geymonat (see [5] and [6]) for the
spectral analysis of elliptic systems of mixed order.

The exact controllability problem is strictly connected to the spectral
properties of Aε; in particular, when ε > 0 the spectrum of A is formed only
of eigenvalues of finite multiplicity, and the exact controllability problem can
be solved with the techniques of harmonic analysis and multiplier methods
(see [2], [3], [10], [12], and [13]).

Moreover it is well known, in the linear thin-shell theory, that the limit
as ε → 0 leads to a singular perturbation problem. When ε vanishes A0 has
a nonempty essential spectrum and the system is no more controllable; that
is, there exist some initial data such that the system (1.1) is not exactly con-
trollable. In a recent paper [4] we proved, by means of the Weyl sequences,
an abstract theorem of noncontrollability of Douglas-Nirenberg operators of
mixed order with nonempty essential spectrum. The established result sug-
gests that if we impose boundary control functions on the system (1.1), the
asymptotic limit when ε → 0 can not, in general, be computed. It is quite
natural to wonder whether there exist some initial data which we can control
also to the limit as ε → 0. The problem is, then to solve the controllability
problem in a relaxed sense and to look for subspaces where displacements
and controls converge uniformly with respect to ε.

We assume that the shell is inhibited (i.e., a0(u,u) > 0). In this case the
vibrations are medium frequency vibrations and their limit behavior only in-
volves the form a0, so the membrane approximation and its spectral proper-
ties assume an important role in the present situation. We consider the case
in which a0(u,u) is continuous and coercive (i.e., well-inhibited); moreover,
we denote by V0 the limit space completion of V with the norm a0(u,u).

Since the essential spectrum of A0, which we denote by σess(A0), is a
bounded set and since A0 is a positive definite, self-adjoint operator, we can
consider the inverse operator (A0)−1 and decompose it into two operators
(A0)−1

0 and (A0)−1
∗ where (A0)−1

0 is a self-adjoint, compact operator of class
Cp. That is, if we denote by σj its eigenvalues arranged in decreasing order
and repeated according to multiplicity, it happens that

∞∑
j=1

σp
j < +∞, 0 < p < +∞.

Assumption I. We assume that there exists a positive value μ∗ (which is
not an eigenvalue of (A0)−1) and an index j∗ such that {σj}j>j∗ are the
only eingenvalues of (A0)−1 in the set (0, μ∗).
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We introduce the sequence {λ0
k} of eigenvalues defined by λ0

k = 1/σj∗+k,
k = 1, . . . , and denote by E0 the subspace spanned by the eigenfunctions ϕ0

j

corresponding to the eigenvalues λ0
j and by E∗

0 the complementary subspace.
When we disturb the spectrum of A0 by the small positive parameter

ε, σess(A0) generates a sequence of eigenvalues. The operator Aε has only
a discrete spectrum with accumulation point +∞; moreover Aε is a Cp

operator. Also in this case we can consider the decomposition of (Aε)−1

into a couple of compact operators (Aε)−1
0 and (Aε)−1

∗ such that the Cp

norm
‖(Aε)−1

0 − (A0)−1
0 ‖p → 0 as ε → 0. (1.3)

We denote by Eε the subspace spanned by the eigenfunctions ϕε
j correspond-

ing to the eigenvalues λε
j (derived from the perturbation of λ0

j ) and by E∗
ε

the complementary subspace.
We also remark that the power p depends on ε and the dimension of Ω.

In this situation we can consider the following relaxed exact controllability
problems.

(Pε) Let Ĝε be a closed subspace of H × V′. We say that there is relaxed
exact controllability if given T > 0 and an initial state {z0, z1} ∈ H × V′

there exists a control gε ∈ L2(Σ) such that the unique solution zε of

z̈ε + A0zε + εA1zε = 0 in Q = Ω × (0, T )
B0zε = g1

ε ,
√

εB1zε = g2
ε on Σ = ∂Ω × (0, T )

zε(0) = z0 , żε(0) = z1 in Ω

satisfies the following condition: {zε(T ), żε(T )} ∈ Ĝε.

The aim of this paper is to find sufficient conditions on the subspace Ĝε

in order to pass to the limit as ε → 0 and obtain uniform convergence to the
nonperturbed, relaxed exact controllability problem (P), which reads

(P) Let Ĝ0 be a closed subspace of H × (V0)′. We have relaxed exact con-
trollability if, given T > 0 and an initial state {z0, z1} ∈ H × (V0)′ there
exists a control g0 ∈ L2(Σ) such that the unique solution z of

z̈ + A0z = 0 in Q = Ω × (0, T )
B0z = g0 on Σ = ∂Ω × (0, T )

z(0) = z0 , ż(0) = z1 in Ω

satisfies the following condition: {z(T ), ż(T )} ∈ Ĝ0.
The next section is devoted to recalling and determining some convergence

results for the homogeneous problem, also referring, in particular, to some
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convergence results in the papers of Sanchez-Palencia (see for example [14]
and [15]) and Kato [8].

The relaxed exact controllability for the hemispherical shell and the mem-
brane approximation is examined and carried out in Section 3 as an example
of our theory.

2. The homogeneous problem

Since we want to attack the controllability problem by the HUM method
(see [9] and [11]), we consider the homogeneous problems associated with
(Pε).
(HPε)We denote by yε the solution of the perturbed homogeneous problem

ÿε + Aεyε = 0 in Q = Ω × (0, T )
B0yε = 0,

√
εB1yε = 0 on Σ = ∂Ω × (0, T )

yε(0) = y0
ε , ẏε(0) = y1

ε in Ω

and define F
Ĝε

= {(y0,y1) : y0 ∈ V ,y1 ∈ H such that (ẏε(T ),−yε(T )) ∈
G∗

ε}, where G∗
ε is the polar set of Ĝε in H × V; i.e.,

{f0, f1} ∈ G∗
ε ⇐⇒ (f0,g0) + (f1,g1) = 0 ∀{g0,g1} ∈ Ĝε.

We assume that (y0,y1) ∈ Gε where Gε is the completion of the subspace
(Eε×Eε) with the norm of V×H. It follows from the well-known Proposition
1 below that Gε is a subset of F

Ĝε
, and in the sequel we identify Gε with

F
Ĝε

. The first step is to establish some convergence results (as ε → 0) to
the limit homogeneous problem:
(HP) Given {y0,y1} ∈ G0 (completion of (E0×E0) with the norm V0×H),
the limit homogeneous problem reads

ÿ + A0y = 0 in Q = Ω × (0, T )
B0y = 0 on Σ = ∂Ω × (0, T )

y(0) = y0 , ẏ(0) = y1 in Ω.

We briefly recall the existence and uniqueness theorem for problems (HPε)
and (HP).
Proposition 1. [Existence and Uniqueness Theorem]. Let V0 (respectively
V) and H be two Hilbert spaces, V0 (respectively V) ⊂ H with dense and
continuous imbedding. Let a0 (respectively aε) be a continuous, symmetric
and coercive form in V0 (respectively V), then there exists a unique solution
of the problem (HP) (respectively HPε) which belongs to G0 (respectively
Gε).
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In our situation we have H = L2(Ω)3; V is the subspace of H1(Ω) ×
H1(Ω) × H2(Ω) of the functions satisfying the boundary condition defined
by the operator Bε and V0 = H1(Ω) × H1(Ω) × L2(Ω), with the boundary
condition defined by the operator B0, is the limit space completion of V
with the norm a0(v,v). We denote by {y0

ε ,y
1
ε} the initial data in the space

Gε ∈ V × H. The unique solution to the problem HPε satisfies

yε ∈ L∞(0, T ;V), ẏε ∈ L∞(0, T ;H);

moreover, yε(0) = y0
ε , and the following integral equality holds true:∫

Ω
y1

εu +
∫ T

0

∫
Ω

ẏεu̇ =
∫ T

0
a0(yε,u) + ε

∫ T

0
a1(yε,u) (2.1)

for any u in the space of the test functions with u(T ) = 0. We introduce
the energy

eε(yε, ẏε) =
1
2
{‖ẏε‖2 + a0(yε,yε) + εa1(yε,yε)}, (2.2)

and after a formal multiplication by ẏε we get the energy identity

eε(yε, ẏε) = eε(y0
ε ,y

1
ε) (2.3)

where

e(y0
ε ,y

1
ε) = 1

2{‖y1
ε‖2+a0(y0

ε ,y
0
ε)} and eε(y0

ε ,y
1
ε) = e(y0

ε ,y
1
ε)+

1
2εa1(y0

ε ,y
0
ε).

Since aε(u,u) = a0(u,u)+εa1(u,u) and a0(u,u) are continuous and coercive
in V and V0 respectively, it follows that eε(u, u̇) is a norm equivalent to the
norm in V × H and e(u, u̇) is a norm equivalent to the norm in V0 × H.

2.1. Convergence of the initial data. We prove some preliminary results
we shall use later.
Lemma 2.1. If Assumption I and (1.3) are satisfied, then for each {y0

ε ,y
1
ε}

∈ Gε ∈ V × H, we have yi
ε → yi strongly in H, i = 0, 1 and moreover

{y0,y1} ∈ G0.
Proof. We consider the spectral families E(A0, λ), E(Aε, λ) corresponding
to the operators A0 and Aε. The proof of the lemma is a consequence of the
Rellich theorem on the convergence of the spectral families related to the
bounded inverse operators (A0)−1 and (Aε)−1, in particular to the inverse
operators (A0)−1

0 and (Aε)−1
0 . Indeed we have (see [15]) that from (1.3) and

if μ∗ is not an eigenvalue of (A0)−1 (and hence of (A0)−1
0 ), the following

convergence holds true

E((Aε)−1
0 , μ∗)u → E((A0)−1

0 , μ∗)u strongly in H. (2.4)
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Since (Aε)−1
0 has a discrete spectrum with eigenfunctions ψε

n, the left-hand
side of (2.4) reads

E((Aε)−1
0 , μ∗)u =

∑
1/λε

n<μ∗

(u,ψε
n)ψε

n =
∑

λε
n>1/μ∗

(u,ψε
n)ψε

n. (2.5)

From the hypothesis made on μ∗, we have for the right-hand side of (2.4)
the equality

E((A0)−1
0 , μ∗)u =

∑
λ0

n>1/μ∗

(u,ϕ0
n)ϕ0

n. (2.6)

Now if we put u = yi
ε ∈ Eε with i = 0, 1, it follows that∑

λn>1/μ∗

(u,ψε
n)ψε

n =
∑

λε
n>1/μ∗

(yi
ε,ϕ

ε
n)ϕε

n = yi
ε →

∑
λ0

n>1/μ∗

(yi
ε,ϕ

0
n)ϕ0

n = yi

(2.7)
strongly in H and yi ∈ E0. �

Associated with the boundary condition defined by Bε, we consider the
system of normal complementary boundary conditions Cε = {C0,

√
εC1}.

The control problem requires us to find estimates for the quantity ‖Cε(yε)‖2
Σ.

In this section we suppose that we have them, and for the sake of simplicity,
in the case in which we have only one control, Cε is identified with one of
its components. So Cε stands for the normal boundary condition comple-
mentary to B0 (respectively B1) if we put g2

ε = 0 (respectively g1
ε = 0).

We introduce the operator Λ
Ĝε

such that〈
Λ

Ĝε
{y0

ε ,y
1
ε}, {y0

ε ,y
1
ε}

〉
= ‖Cεyε‖2

Σ. (2.8)

Assumption II. We suppose that there exists a time T 0 independent of ε
such that for each T > T 0, the quantity (2.8) defines a norm in F

Ĝε
equiv-

alent to the energy norm; i.e., there exist two constants c1, c2 independent
of ε such that

c1(T )eε(y0
ε ,y

1
ε) ≤ ‖Cεyε‖2

Σ ≤ c2(T )eε(y0
ε ,y

1
ε). (2.9)

The estimates (2.9) allow us to solve the problem〈
Λ

Ĝε
{y0

ε ,y
1
ε}, {y0

ε ,y
1
ε}

〉
=

∫
Ω

z1y0
ε − z0y1

ε . (2.10)

for any y0
ε ,y

1
ε ∈ Gε.

Lemma 2.2. Under Assumption II, we have that

y1
ε → y1 strongly in H, y0

ε → y0 weakly in V0
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with {y0,y1} ∈ G0. Moreover, the quantity εa1(y0
ε ,y

0
ε) is bounded uniformly

in ε.

Proof. From the right-hand side of (2.10) and for any {z0, z1} ∈ H× (V0)′∣∣∣ ∫
Ω

z1y0
ε − z0y1

ε

∣∣∣ ≤ ĉ1‖y0
ε‖V0 + ĉ2‖y1

ε‖H,

and taking into account (2.8), we deduce that

‖Cεyε‖2
Σ ≤ ĉ e(y0

ε ,y
1
ε)

1/2. (2.11)

Moreover, from the left inequality in (2.9) and from the above inequality
(2.11) we have that

c1(T )e(y0
ε ,y

1
ε) ≤ c1(T )eε(y0

ε ,y
1
ε) ≤ ‖Cεyε‖2

Σ ≤ ĉ e(y0
ε ,y

1
ε)

1/2,

which implies

e(y0
ε ,y

1
ε) ≤ C (2.12)

and also εa1(y0
ε ,y

0
ε) ≤ C where C is independent of ε. So we can obtain weak

convergence for a subsequence, which we also denote by y0
ε ,y

1
ε in V0 × H.

Moreover from the strong convergence obtained in Lemma 2.1, we have that
the limit functions {y0,y1} ∈ G0. �

2.2. Convergence of the solution of the homogeneous problem. As
a consequence of the Lemma 2.1 and Lemma 2.2, we have the convergence of
the solution of the problem (HPε) to the unique solution of the limit problem
(HP). Indeed, from the convergence of the initial data (see for example [14],
Theorem 3.3 and Remark 3.4) we deduce the following estimates which allow
us to pass to the limit as ε goes to zero:

‖ẏε‖2 ≤ const., a0(yε,yε) ≤ const., εa1(yε,yε) ≤ const.;

therefore, we can find a convergent subsequence such that

ẏε → ẏ in L∞(0, T ;H) weak �, yε → y in L∞(0, T ;V0) weak �,

and since a1(u,w) ≤ a1(u,u)1/2a1(w,w)1/2, the last term in (2.1) vanishes;
thanks to the previous lemmas it follows that yε converges to y, which is
the unique solution to the limit problem.
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3. Some convergence results for the controllability problem

Taking into account the analysis carried out in the previous section we
are in a position to give the following result:
Theorem 3.1. Given an initial state {z0, z1} ∈ H × (V0)′, if Assumption
II is satisified then the unique solution zε of the system

z̈ε + Aεzε = 0 in Q = Ω × (0, T )
Bεzε = gε, on Σ = ∂Ω × (0, T )

zε(0) = z0 , żε(0) = z1 in Ω
(3.1)

with
gε = Cεyε (3.2)

where yε is the unique solution of the homogeneous problem computed by
initial data y0

ε ,y
1
ε ∈ Gε, satisfies

{zε(T ), żε(T )} ∈ Ĝε. (3.3)

Moreover,
gε → q(t) weakly in L2(Σ) as ε → 0. (3.4)

Proof. The first part of the theorem, thanks to Assumption II, follows
from the HUM method for relaxed controllability problems (see [11]). The
convergence (3.4) follows from Lemma 2.1 and Lemma 2.2. Indeed, from
(2.11) and the estimate (2.12) we have that ‖Cεyε‖2

Σ ≤ const.; hence, passing
to the limit up to subsequences for ε → 0, we obtain the weak convergence
in L2(Σ). �

The asymptotic behavior of the complementary boundary conditions, that
is the computation of the limit control function, depends on the geometry
of the shell and the specific control problem. In order to characterize the
function q(t) which appears in (3.4) we have to specify the control action on
the boundary. In the sequel we shall analyze an example related to the case
of elastic hemispherical shells. However we conjecture that, with reference
to the subspaces introduced, also in the general case, if the problem (Pε) is
exactly controllable in a relaxed sense (as specified above), one can show the
convergence of the control function gε to the control function of the limit
problem.

3.1. A uniqueness result for the relaxed exact controllability of
hemispherical shells and asymptotic limits. As a nontrivial example
of our theory we consider the axially symmetric vibrations of a thin hemi-
spherical shell. The main step in the HUM method, to which we intend



relaxed exact controllability and asymptotic limit 1275

to refer, is the proof of a uniqueness theorem related to the homogeneous
problem.

When the problem, as in this case and in general for a surface of revolution,
is set in one space dimension we can use Fourier series expansions to solve the
homogeneous problem, and the uniqueness theorem is a consequence of the
existence of an asymptotic gap for the eigenvalues according to the Ingham
and Ball-Slemrod theorems (see [1] and [7]). The eigenvalues problem and
the exact controllability problem for spherical shells has been carried out
in some of our previous papers (see for example [2] and [3]); here we recall
only some spectral properties in the perturbed and unperturbed case which
allow us to get the uniqueness result. The system describing the vibrations
of hemispherical shells in terms of the meridianal and radial components of
the displacement vector z = (z1, z2) is the following,{

z̈1 − L(z1) + (1 + ν)z′2 − εL(z1 + z′2) = 0

z̈2 + ε
sin θ (L(z1 + z′2) sin θ)′ − (1+ν)

sin θ (z1 sin θ)′ + 2(1 + ν)z2 = 0,
(3.5)

where L(f) = f ′′ + f ′cotθ− f(ν + cot2θ) and the “prime” stands for the first
derivative with respect to the opening angle θ varying in the open interval
(0, θo). In this section we put θ0 = π/2 and assume control of the vibrations
by the action of a unique boundary control g(t). The following boundary
conditions are associated with the equations (3.5):⎧⎪⎨⎪⎩

z1(0, t) = 0, z2(θo, t) = gε(t)
z1(0, t) + z′2(0, t) = z1(θo, t) + z′2(θo, t) = 0
L(z1 + z′2)(0,t) = L(z1 + z′2)(θo,t) = 0.

(3.6)

Let L2(0, θ0; sin θ) be the space of the square-integrable functions with re-
spect to the weight sin θ; we define the following spaces:

U = {u :
∂u

∂θ
, u cot θ ∈ L2(0, θ0; sin θ)} U0 = {u ∈ U : u(θ0) = 0},

W = {w : w ∈ L2(0, θ0; sin θ)}, W0 = {w ∈ W : w′ ∈ U0},

and the vector spaces

V = U0×W0, V0 = U0×L2(0, θ0; sin θ), H = L2(0, θ0; sin θ)×L2(0, θ0; sin θ).
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We recall that for the eigenvalues problem associated with (3.5) we find two
subsequences of eigenvalues:

λε
n =

1
2
{εl2n + ((4 + ν)ε + 1)ln + 3(1 + ν)(1 + ε)

+
√

(εl2n + ((4 + ν)ε + 1)ln + 3(1 + ν)(1 + ε))2 − 4ln(εl2n + 2εln + (1 + ε)(1 − ν2)}
and

λ∗
n(ε) =

1
2
{εl2n + ((4 + ν)ε + 1)ln + 3(1 + ν)(1 + ε)

−
√

(εl2n + ((4 + ν)ε + 1)ln + 3(1 + ν)(1 + ε))2 − 4ln(εl2n + 2εln + (1 + ε)(1 − ν2)}

with λ0 = 2(1 + ν), ln = 2n(2n + 1) − 2, n = 1, . . . .
Both the sequences go to infinity as n → ∞. For ε = 0 the two sub-

sequences λ0
n and λ∗

n(0) have different asymptotic behaviors. While the
sequence λ0

n → ∞ as n → ∞, the sequence λ∗
n(0) tends to a finite accumula-

tion point; that is, λ∗
n(0) → (1 − ν2). So the limit operator has a nonempty

essential spectrum and the accumulation point (1− ν2) is the element of the
essential spectrum. Moreover for ε = 0 one has the following eigenvalues
arrangement:

0 < λ∗
1(0) < λ∗

2(0) < · · · < (1 − ν2) < 2(1 + ν) = λ0 < λ0
1 < λ0

2 < · · · .

We observe that Assumption I is satisfied. Indeed, we can fix a closed curve
Γ crossing the point λ∗ with (1− ν2) < λ∗ < 2(1 + ν) and containing all the
eigenvalues λ∗

j (0). We consider the space E0 spanned by the eigenfuntions
ϕ0

n associated with the eigenvalues λ0
n and denote by Eε the space spanned

by the eigenfunction ϕε
n associated with the perturbed eigenvalues λε

n. If we
take the initial data (y0

ε ,y
1
ε) of the homogeneous problem related to (3.5),

in the space Gε, we obtain the unique solution

yε =
∑

n

{(y0
ε ,ϕ

ε
n) cos(μnt) +

(y1
ε ,ϕ

ε
n)

μn
sin(μnt)}ϕε

n μn =
√

λε
n.

In this situation it is useful to prove the following lemma.

Lemma 3.1. The eigenvalues μj(ε) satisfy an asymptotic gap uniformly in
ε; that is, there exists a positive costant γ independent of ε such that

|μn(ε) − μn−1(ε)| = γ > 0.
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Proof. First of all we observe that λε
n > λε

n−1. We denote by Pn and Qn

the following polynomials in the integer n,

Pn = εl2n + ((4 + ν)ε + 1)ln + 3(1 + ν)(1 + ε),

Qn = 4ln(εl2n + 2εln + (1 + ε)(1 − ν2),

and consider

μn − μn−1 =
Pn − Pn−1 +

√
P 2

n − Qn −
√

P 2
n−1 − Qn−1√

Pn +
√

P 2
n − Qn +

√
Pn−1 +

√
P 2

n−1 − Qn−1

≥
Pn − Pn−1 +

√
P 2

n − Qn −
√

P 2
n−1 − Qn−1

√
2Pn +

√
2Pn−1

.

Since Qn

P 2
n
→ 0 as n → ∞ ∀ε ≥ 0, we have definitively

μn − μn−1 ≥ β
Pn − Pn−1√

2Pn +
√

2Pn−1

with 1 ≤ β ≤ 2. Moreover, since Pn ≥ Pn−1 we obtain

μn − μn−1 ≥ β
Pn − Pn−1

2
√

2Pn
= β

ε(64n3 + o(n3)) + (8n + o(n))
2
√

ε(32n4 + o(n4)) + (8n2 + o(n2))
,

and hence γ ≥ 2 for any ε ≥ 0. �
We are now in a position to apply the Ball-Slemrod theorem, which assures

that in this situation for any T ≥ 2π
γ

c1(T )
∑

n

|an|2 ≤ ‖Cεyε‖2
Σ ≤ c2(T )

∑
n

|an|2, (3.7)

where c1(T ) and c2(T ) are two constants depending only on T, and

|an|2 = (|(y0
ε ,ϕ

ε
n)|2 +

|(y1
ε ,ϕ

ε
n)|2

λε
n

) |Cε(ϕε
n)|2.

We recall that in this situation setting yε = (uε, wε)

‖Cεyε‖2
Σ =

∫
Σ
(Cεyε)2 ds dt =

∫ T

0
[u′

ε(θ0, t) − (1 + ν)wε(θ0, t)]2 sin θ0 dt.



1278 G. Geymonat and V. Valente

Since we can verify (see [3], in particular Lemma 2.2) that Cϕε
n 
= 0 for any

n and ε ≥ 0, and we can prove the estimates

c3 <
|Cεϕε

n|2
λε

n

< c4, (3.8)

it follows that ‖Cεyε‖Σ defines a norm equivalent to the energy norm on
the set of our initial data. Moreover, the right inequality in (3.7) and the
convergence result of the initial data given in Lemma 2.1 and Lemma 2.2
imply the boundness in L2(Σ)-norm (independent of ε) of the complementary
boundary conditions, so we can find a subsequence which weakly converges;
i.e.,

Cεyε → q(t) weakly in L2(Σ). (3.9)
Now we shall prove that q(t) = Cy, where Cy = u′(θ0, t) − (1 + ν)w(θ0, t)
and {u, w} is the solution of the limit homogeneous problem.

Lemma 3.2. We consider the following boundary value problem:⎧⎪⎨⎪⎩
−

√
ε√

sin θ
(a1

√
sin θ)′′ + a1 = b1, a1(0) = a′1(θ0) = 0,

−√
εL(a1 + a′2) + a1 + a′2 = b1 + b′2,

a1 + a′2|0 = a1 + a′2|θ0 = 0, a2(0) = b2(0).

(3.10)

If b = (b1, b2) ∈ U × W , then as ε → 0,

a → b strongly in U × L2(0, θ0; sin θ), a1(θ0) → b1(θ0)

a1 + a′2 → b1 + b′2 strongly in L2(0, θ0; sin θ).

The proof of the lemma follows from the direct computation of the first
equations (3.10)1–(3.10)2, and from a simple analysis of the equations (3.10)3
and (3.10)4.
Theorem 3.2. We assume that (3.9) is satisfied; then

Cεyε → Cy weakly in L2(Σ).

Proof. We introduce the Laplace transform of yε, i.e.,

sε =
∫ ∞

0
e−rt yε dt,

which satisfies the system

− L(sε
1) + (1 + ν)sε

2
′ − εL(sε

1 + sε
2
′) = −r2sε

1 + ru0
ε + u1

ε (3.11)

ε

sin θ
(L(sε

1 +sε
2
′) sin θ)′− (1 + ν)

sin θ
(sε

1 sin θ)′ + 2(1 + ν)sε
2 = −r2sε

2 + rw0
ε +w1

ε .
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From Lemma 3.2, multiplying the first equation of (3.11) by a1 sin θ and the
second one by a2 sin θ and taking into account the boundary conditions on
sε and a = (a1, a2), we obtain

Cε(sε)a1(θ0)+a0(sε,a)−ε

∫ θ0

0
(sε

1+sε
2
′)L(a1+a′2) sin θ = (−r2sε+ry0

ε+y1
ε ,a)H,

and from the problem (3.10) introduced in Lemma 3.2

Cε(sε) a1(θ0) + a0(sε,a) −
√

ε

∫ θ0

0
(sε

1 + sε
2
′)((b1 + b′2) − (a1 + a′2)) sin θ

= (−r2sε + ry0
ε + y1

ε ,a)H.

The product of the limit system (that is, the system obtained by formally
putting ε = 0 in (3.5)) with b = (b1, b2) gives the identity

C(s) b1(θ0) + a0(s,b) = (−r2s + ry0 + y1,b)H,

where s is the Laplace transform of y. The proof of the theorem follows from
the convergence results established in Lemma 3.2, and from the boundedness
(uniformly in ε) of

√
ε (sε

1 + sε
2
′), and consequently of the energy estimate,

for any y0
ε ∈ V established in Lemma 2.2.
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