37 research outputs found

    Simultaneous quantification of 12 different nucleotides and nucleosides released from renal epithelium and in human urine samples using ion-pair reversed-phase HPLC

    Get PDF
    Nucleotides and nucleosides are not only involved in cellular metabolism but also act extracellularly via P1 and P2 receptors, to elicit a wide variety of physiological and pathophysiological responses through paracrine and autocrine signalling pathways. For the first time, we have used an ion-pair reversed-phase high-performance liquid chromatography ultraviolet (UV)-coupled method to rapidly and simultaneously quantify 12 different nucleotides and nucleosides (adenosine triphosphate, adenosine diphosphate, adenosine monophosphate, adenosine, uridine triphosphate, uridine diphosphate, uridine monophosphate, uridine, guanosine triphosphate, guanosine diphosphate, guanosine monophosphate, guanosine): (1) released from a mouse renal cell line (M1 cortical collecting duct) and (2) in human biological samples (i.e., urine). To facilitate analysis of urine samples, a solid-phase extraction step was incorporated (overall recovery rate ? 98 %). All samples were analyzed following injection (100 ?l) into a Synergi Polar-RP 80 Å (250 × 4.6 mm) reversed-phase column with a particle size of 10 ?m, protected with a guard column. A gradient elution profile was run with a mobile phase (phosphate buffer plus ion-pairing agent tetrabutylammonium hydrogen sulfate; pH 6) in 2-30 % acetonitrile (v/v) for 35 min (including equilibration time) at 1 ml min(-1) flow rate. Eluted compounds were detected by UV absorbance at 254 nm and quantified using standard curves for nucleotide and nucleoside mixtures of known concentration. Following validation (specificity, linearity, limits of detection and quantitation, system precision, accuracy, and intermediate precision parameters), this protocol was successfully and reproducibly used to quantify picomolar to nanomolar concentrations of nucleosides and nucleotides in isotonic and hypotonic cell buffers that transiently bathed M1 cells, and urine samples from normal subjects and overactive bladder patients

    Action of MK‐7264 (Gefapixant) at human P2X3 and P2X2/3 receptors and in vivo efficacy in models of sensitisation

    Get PDF
    Background & Purpose The P2X3 receptor is an ATP‐gated ion channel expressed by sensory afferent neurons, and is as a target to treat chronic sensitisation conditions. The first‐in‐class, selective P2X3 and P2X2/3 receptor antagonist, the diaminopyrimidine MK‐7264 (Gefapixant), has progressed to Phase III trials for refractory or unexplained chronic cough. We have used patch‐clamp to elucidate the pharmacology and kinetics of MK‐7264 and rat models of hypersensitivity and hyperalgesia to test efficacy in these conditions. Experimental Approach Whole‐cell patch‐clamp of 1321N1 cells expressing human P2X3 and P2X2/3 receptors was used to determine mode of MK‐7264 action, potency and kinetics. The analgesic efficacy was assessed using paw withdrawal threshold and limb weight distribution in rat models of inflammatory, osteoarthritic and neuropathic sensitisation. Key Results MK‐7264 is a reversible allosteric antagonist at human P2X3 and P2X2/3 receptors with IC50 values of 153 and 220nM, respectively. Experiments with the slowly desensitising P2X2/3 heteromer revealed concentration and state‐dependency to wash‐on, with faster rates and greater inhibition when applied before agonist compared to during agonist application. Wash‐on rate (τ value) for MK‐7264 at maximal concentrations was 19s and 146s when applied before and during agonist application, respectively. In vivo, MK‐7264 (30 mg/kg) displayed efficacy comparable to naproxen (20 mg/kg) in inflammatory and osteoarthritic sensitisation models, and gabapentin (100 mg/kg) in neuropathic sensitisation models, increasing paw withdrawal threshold and decreasing weight bearing discomfort. Conclusions and Implications MK‐7264 is a reversible and selective P2X3 and P2X2/3 antagonist, exerting allosteric antagonism via preferential activity at closed channels. Efficacy in rat models supports clinical investigation of chronic sensitisation conditions

    Purinergic receptors are part of a signalling system for proliferation and differentiation in distinct cell lineages in human anagen hair follicles

    Get PDF
    We investigated the expression of P2X5, P2X7, P2Y1 and P2Y2 receptor subtypes in adult human anagen hair follicles and in relation to markers of proliferation [proliferating cell nuclear antigen (PCNA) and Ki-67], keratinocyte differentiation (involucrin) and apoptosis (anticaspase-3). Using immunohistochemistry, we showed that P2X5, P2Y1 and P2Y2 receptors were expressed in spatially distinct zones of the anagen hair follicle: P2Y1 receptors in the outer root sheath and bulb, P2X5 receptors in the inner and outer root sheaths and medulla and P2Y2 receptors in living cells at the edge of the cortex/medulla. P2X7 receptors were not expressed. Colocalisation experiments suggested different functional roles for these receptors: P2Y1 receptors were associated with bulb and outer root sheath keratinocyte proliferation, P2X5 receptors were associated with differentiation of cells of the medulla and inner root sheaths and P2Y2 receptors were associated with early differentiated cells in the cortex/medulla that contribute to the formation of the hair shaft. The therapeutic potential of purinergic agonists and antagonists for controlling hair growth is discussed

    P2 receptor-mediated modulation of neurotransmitter release—an update

    Get PDF
    Presynaptic nerve terminals are equipped with a number of presynaptic auto- and heteroreceptors, including ionotropic P2X and metabotropic P2Y receptors. P2 receptors serve as modulation sites of transmitter release by ATP and other nucleotides released by neuronal activity and pathological signals. A wide variety of P2X and P2Y receptors expressed at pre- and postsynaptic sites as well as in glial cells are involved directly or indirectly in the modulation of neurotransmitter release. Nucleotides are released from synaptic and nonsynaptic sites throughout the nervous system and might reach concentrations high enough to activate these receptors. By providing a fine-tuning mechanism these receptors also offer attractive sites for pharmacotherapy in nervous system diseases. Here we review the rapidly emerging data on the modulation of transmitter release by facilitatory and inhibitory P2 receptors and the receptor subtypes involved in these interactions

    In pursuit of P2X3 antagonists: novel therapeutics for chronic pain and afferent sensitization

    Get PDF
    Treating pain by inhibiting ATP activation of P2X3-containing receptors heralds an exciting new approach to pain management, and Afferent's program marks the vanguard in a new class of drugs poised to explore this approach to meet the significant unmet needs in pain management. P2X3 receptor subunits are expressed predominately and selectively in so-called C- and Aδ-fiber primary afferent neurons in most tissues and organ systems, including skin, joints, and hollow organs, suggesting a high degree of specificity to the pain sensing system in the human body. P2X3 antagonists block the activation of these fibers by ATP and stand to offer an alternative approach to the management of pain and discomfort. In addition, P2X3 is expressed pre-synaptically at central terminals of C-fiber afferent neurons, where ATP further sensitizes transmission of painful signals. As a result of the selectivity of the expression of P2X3, there is a lower likelihood of adverse effects in the brain, gastrointestinal, or cardiovascular tissues, effects which remain limiting factors for many existing pain therapeutics. In the periphery, ATP (the factor that triggers P2X3 receptor activation) can be released from various cells as a result of tissue inflammation, injury or stress, as well as visceral organ distension, and stimulate these local nociceptors. The P2X3 receptor rationale has aroused a formidable level of investigation producing many reports that clarify the potential role of ATP as a pain mediator, in chronic sensitized states in particular, and has piqued the interest of pharmaceutical companies. P2X receptor-mediated afferent activation has been implicated in inflammatory, visceral, and neuropathic pain states, as well as in airways hyperreactivity, migraine, itch, and cancer pain. It is well appreciated that oftentimes new mechanisms translate poorly from models into clinical efficacy and effectiveness; however, the breadth of activity seen from P2X3 inhibition in models offers a realistic chance that this novel mechanism to inhibit afferent nerve sensitization may find its place in the sun and bring some merciful relief to the torment of persistent discomfort and pain. The development philosophy at Afferent is to conduct proof of concept patient studies and best identify target patient groups that may benefit from this new intervention

    ATP-Evoked Intracellular Ca Signaling of Different Supporting Cells in the Hearing Mouse Hemicochlea

    Get PDF
    Hearing and its protection is regulated by ATP-evoked Ca2+ signaling in the supporting cells of the organ of Corti, however, the unique anatomy of the cochlea hampers observing these mechanisms. For the first time, we have performed functional ratiometric Ca2+ imaging (fura-2) in three different supporting cell types in the hemicochlea preparation of hearing mice to measure purinergic receptor-mediated Ca2+ signaling in pillar, Deiters' and Hensen's cells. Their resting [Ca2+]i was determined and compared in the same type of preparation. ATP evoked reversible, repeatable and dose-dependent Ca2+ transients in all three cell types, showing desensitization. Inhibiting the Ca2+ signaling of the ionotropic P2X (omission of extracellular Ca2+) and metabotropic P2Y purinergic receptors (depletion of intracellular Ca2+ stores) revealed the involvement of both receptor types. Detection of P2X2,3,4,6,7 and P2Y1,2,6,12,14 receptor mRNAs by RT-PCR supported this finding and antagonism by PPADS suggested different functional purinergic receptor population in pillar versus Deiters' and Hensen's cells. The sum of the extra- and intracellular Ca2+-dependent components of the response was about equal with the control ATP response (linear additivity) in pillar cells, and showed supralinearity in Deiters' and Hensen's cells. Calcium-induced calcium release might explain this synergistic interaction. The more pronounced Ca2+ leak from the endoplasmic reticulum in Deiters' and Hensen's cells, unmasked by cyclopiazonic acid, may also suggests the higher activity of the internal stores in Ca2+ signaling in these cells. Differences in Ca2+ homeostasis and ATP-induced Ca2+ signaling might reflect the distinct roles these cells play in cochlear function and pathophysiology

    Molecular and functional properties of P2X receptors—recent progress and persisting challenges

    Full text link

    In vitro α(1)-adrenoceptor pharmacology of Ro 70-0004 and RS-100329, novel α(1A)-adrenoceptor selective antagonists

    No full text
    1. It has been hypothesized that in patients with benign prostatic hyperplasia, selective antagonism of the α(1A)-adrenoceptor-mediated contraction of lower urinary tract tissues may, via a selective relief of outlet obstruction, lead to an improvement in symptoms. 2. The present study describes the α(1)-adrenoceptor (α(1)-AR) subtype selectivities of two novel α(1)-AR antagonists, Ro 70-0004 (aka RS-100975) and a structurally-related compound RS-100329, and compares them with those of prazosin and tamsulosin. Radioligand binding and second-messenger studies in intact CHO-K1 cells expressing human cloned α(1A)-, α(1B)- and α(1D)-AR showed nanomolar affinity and significant α(1A)-AR subtype selectivity for both Ro 70-0004 (pK(i) 8.9: 60 and 50 fold selectivity) and RS-100329 (pK(i) 9.6: 126 and 50 fold selectivity) over the α(1B)- and α(1D)-AR subtypes respectively. In contrast, prazosin and tamsulosin showed little subtype selectivity. 3. Noradrenaline-induced contractions of human lower urinary tract (LUT) tissues or rabbit bladder neck were competitively antagonized by Ro 70-0004 (pA(2) 8.8 and 8.9), RS-100329 (pA(2) 9.2 and 9.2), tamsulosin (pA(2) 10.4 and 9.8) and prazosin (pA(2) 8.7 and 8.3 respectively). Affinity estimates for tamsulosin and prazosin in antagonizing α(1)-AR-mediated contractions of human renal artery (HRA) and rat aorta (RA) were similar to those observed in LUT tissues, whereas Ro 70-0004 and RS-100329 were approximately 100 fold less potent (pA(2) values of 6.8/6.8 and 7.3/7.9 in HRA/RA respectively). 4. The α(1A)-AR subtype selectivity of Ro 70-0004 and RS-100329, demonstrated in both cloned and native systems, should allow for an evaluation of the clinical utility of a ‘uroselective' agent for the treatment of symptoms associated with benign prostatic hyperplasia
    corecore