420 research outputs found

    Magnetic catalyst bodies

    Get PDF
    After a discussion about the importance of the size of the catalyst bodies with reactions in the liquid-phase with a suspended catalyst, the possibilities of magnetic separation are dealt with. Deficiencies of the usual ferromagnetic particles are the reactivity and the clustering of the particles. A procedure to produce more suitable magnetic particles is to deposit a nickel± iron precursor on a support and to obtain small metal particles by reduction. Subsequently the metal particles are encapsulated in layers of graphitic carbon by exposure to methane at 700°C. Exposure to methane at lower temperature leads to growth of carbon fibrils, which can be controlled by raising the temperature. The alumina support is dissolved in hydrochloric acid. The magnetic properties of nickel-iron alloys prevent clustering of the ferromagnetic particles

    Development and Application of 3-Dimensional Transmission Electron Microscopy (3D-TEM) for the Characterization of Metal-Zeolite Catalyst Systems

    Get PDF
    With electron tomography (3D-TEM) a 3D-reconstruction is calculated from a series of TEM images taken at a tilt angle range (tilting range) of +70° to -70°. The reconstruction can be visualized with contour surfaces that give information about the surface of the sample as well as with slices through the reconstruction that give detailed information on the interior of the sample. Electron tomography gives much more information than Scanning Electron Microscopy (SEM), since SEM gives only information about the surface of a sample. As a case study, the imaging of silver clusters on zeolite NaY is given. The reconstruction shows silver particles at the external surface as well as a silver particle in a mesopore of the zeolite crystallite. It is concluded that 3D-TEM comprises a breakthrough in the characterization of nano-structured solid catalysts

    Impact of agglomeration state of nano- and submicron sized gold particles on pulmonary inflammation

    Get PDF
    BACKGROUND: Nanoparticle (NP) toxicity testing comes with many challenges. Characterization of the test substance is of crucial importance and in the case of NPs, agglomeration/aggregation state in physiological media needs to be considered. In this study, we have addressed the effect of agglomerated versus single particle suspensions of nano- and submicron sized gold on the inflammatory response in the lung. Rats were exposed to a single dose of 1.6 mg/kg body weight (bw) of spherical gold particles with geometric diameters of 50 nm or 250 nm diluted either by ultrapure water or by adding phosphate buffered saline (PBS). A single dose of 1.6 mg/kg bw DQ12 quartz was used as a positive control for pulmonary inflammation. Extensive characterization of the particle suspensions has been performed by determining the zetapotential, pH, gold concentration and particle size distribution. Primary particle size and particle purity has been verified using transmission electron microscopy (TEM) techniques. Pulmonary inflammation (total cell number, differential cell count and pro-inflammatory cytokines), cell damage (total protein and albumin) and cytotoxicity (alkaline phosphatase and lactate dehydrogenase) were determined in bronchoalveolar lavage fluid (BALF) and acute systemic effects in blood (total cell number, differential cell counts, fibrinogen and C-reactive protein) 3 and 24 hours post exposure. Uptake of gold particles in alveolar macrophages has been determined by TEM. RESULTS: Particles diluted in ultrapure water are well dispersed, while agglomerates are formed when diluting in PBS. The particle size of the 50 nm particles was confirmed, while the 250 nm particles appear to be 200 nm using tracking analysis and 210 nm using TEM. No major differences in pulmonary and systemic toxicity markers were observed after instillation of agglomerated versus single gold particles of different sizes. Both agglomerated as well as single nanoparticles were taken up by macrophages. CONCLUSION: Primary particle size, gold concentration and particle purity are important features to check, since these characteristics may deviate from the manufacturer's description. Suspensions of well dispersed 50 nm and 250 nm particles as well as their agglomerates produced very mild pulmonary inflammation at the same mass based dose. We conclude that single 50 nm gold particles do not pose a greater acute hazard than their agglomerates or slightly larger gold particles when using pulmonary inflammation as a marker for toxicity

    Search for Interstellar Water in the Translucent Molecular Cloud toward HD 154368

    Full text link
    We report an upper limit of 9 x 10^{12} cm-2 on the column density of water in the translucent cloud along the line of sight toward HD 154368. This result is based upon a search for the C-X band of water near 1240 \AA carried out using the Goddard High Resolution Spectrograph of the Hubble Space Telescope. Our observational limit on the water abundance together with detailed chemical models of translucent clouds and previous measurements of OH along the line of sight constrain the branching ratio in the dissociative recombination of H_3O+ to form water. We find at the 3σ3\sigma level that no more than 30% of dissociative recombinations of H_3O+ can lead to H_2O. The observed spectrum also yielded high-resolution observations of the Mg II doublet at 1239.9 \AA and 1240.4 \AA, allowing the velocity structure of the dominant ionization state of magnesium to be studied along the line of sight. The Mg II spectrum is consistent with GHRS observations at lower spectral resolution that were obtained previously but allow an additional velocity component to be identified.Comment: Accepted by ApJ, uses aasp

    The Structure of Well Defined SiO 2

    Full text link

    Hundreds of variants clustered in genomic loci and biological pathways affect human height

    Get PDF
    Most common human traits and diseases have a polygenic pattern of inheritance: DNA sequence variants at many genetic loci influence the phenotype. Genome-wide association (GWA) studies have identified more than 600 variants associated with human traits, but these typically explain small fractions of phenotypic variation, raising questions about the use of further studies. Here, using 183,727 individuals, we show that hundreds of genetic variants, in at least 180 loci, influence adult height, a highly heritable and classic polygenic trait. The large number of loci reveals patterns with important implications for genetic studies of common human diseases and traits. First, the 180 loci are not random, but instead are enriched for genes that are connected in biological pathways (P = 0.016) and that underlie skeletal growth defects (P < 0.001). Second, the likely causal gene is often located near the most strongly associated variant: in 13 of 21 loci containing a known skeletal growth gene, that gene was closest to the associated variant. Third, at least 19 loci have multiple independently associated variants, suggesting that allelic heterogeneity is a frequent feature of polygenic traits, that comprehensive explorations of already-discovered loci should discover additional variants and that an appreciable fraction of associated loci may have been identified. Fourth, associated variants are enriched for likely functional effects on genes, being over-represented among variants that alter amino-acid structure of proteins and expression levels of nearby genes. Our data explain approximately 10% of the phenotypic variation in height, and we estimate that unidentified common variants of similar effect sizes would increase this figure to approximately 16% of phenotypic variation (approximately 20% of heritable variation). Although additional approaches are needed to dissect the genetic architecture of polygenic human traits fully, our findings indicate that GWA studies can identify large numbers of loci that implicate biologically relevant genes and pathways.
    corecore