66 research outputs found

    A vector equilibrium problem for the two-matrix model in the quartic/quadratic case

    Full text link
    We consider the two sequences of biorthogonal polynomials (p_{k,n})_k and (q_{k,n})_k related to the Hermitian two-matrix model with potentials V(x) = x^2/2 and W(y) = y^4/4 + ty^2. From an asymptotic analysis of the coefficients in the recurrence relation satisfied by these polynomials, we obtain the limiting distribution of the zeros of the polynomials p_{n,n} as n tends to infinity. The limiting zero distribution is characterized as the first measure of the minimizer in a vector equilibrium problem involving three measures which for the case t=0 reduces to the vector equilibrium problem that was given recently by two of us. A novel feature is that for t < 0 an external field is active on the third measure which introduces a new type of critical behavior for a certain negative value of t. We also prove a general result about the interlacing of zeros of biorthogonal polynomials.Comment: 60 pages, 9 figure

    Broncho-alveolar lavage fluid recovery correlates with airway neutrophilia in lung transplant patients

    Get PDF
    SummaryBroncho-alveolar lavage (BAL) is important to assess airway inflammation. There is debate about the volume instilled, but the variation of BAL fluid recovery (BFR) has received little attention. We investigated the association between BFR and rejection/infection status after lung transplantation (LTx).We combined clinical findings, FEV1, transbronchial biopsies and BAL analysis (BFR, interleukin-8 (IL8), cell counts, microbiology) of 115 samples/LTx patients. The patients were divided into 4 groups: stable (subdivided in colonized and non-colonized), acute rejection (AR), Bronchiolitis Obliterans Syndrome (BOS) and infection.BFR was significantly lower in AR, BOS and infection, and correlated with the severity of AR and BOS. A 10ml decrease of BFR was associated with a FEV1 decrease of 4.4% and a %neutrophils and IL8 increase of 9.6% and 9.7pg/ml, respectively. Colonized stable patients had no significant differences in airway inflammation, FEV1 and BFR compared to the non-colonized stable patients.We conclude that a low BFR is an indicator of lung rejection or infection. BFR variation is related to airway obstruction and neutrophilic inflammation, which can cause an increased compliance of the airway wall, making it more collapsible. Airway colonization in stable patients had no effect on airway inflammatory parameters, BFR and FEV1

    Biosynthesis and antimicrobial activity of pseudodesmin and viscosinamide cyclic lipopeptides produced by pseudomonads associated with the cocoyam rhizosphere

    Get PDF
    Pseudomonascyclic lipopeptides (CLPs) are encoded non-ribosomally by biosynthetic gene clusters (BGCs) and possess diverse biological activities. In this study, we conducted chemical structure and BGC analyses with antimicrobial activity assays for two CLPs produced byPseudomonasstrains isolated from the cocoyam rhizosphere in Cameroon and Nigeria. LC-MS and NMR analyses showed that thePseudomonassp. COR52 and A2W4.9 produce pseudodesmin and viscosinamide, respectively. These CLPs belong to the Viscosin group characterized by a nonapeptidic moiety with a 7-membered macrocycle. Similar to other Viscosin-group CLPs, the initiatory non-ribosomal peptide synthetase (NRPS) gene of the viscosinamide BGC is situated remotely from the other two NRPS genes. In contrast, the pseudodesmin genes are all clustered in a single genomic locus. Nano- to micromolar levels of pseudodesmin and viscosinamide led to the hyphal distortion and/or disintegration ofRhizoctonia solaniAG2-2 andPythium myriotylumCMR1, whereas similar levels of White Line-Inducing Principle (WLIP), another member of the Viscosin group, resulted in complete lysis of both soil-borne phytopathogens. In addition to the identification of the biosynthetic genes of these two CLPs and the demonstration of their interaction with soil-borne pathogens, this study provides further insights regarding evolutionary divergence within the Viscosin group

    Zebrafish prox1b Mutants Develop a Lymphatic Vasculature, and prox1b Does Not Specifically Mark Lymphatic Endothelial Cells

    Get PDF
    Background: The expression of the Prospero homeodomain transcription factor (Prox1) in a subset of cardinal venous cells specifies the lymphatic lineage in mice. Prox1 is also indispensible for the maintenance of lymphatic cell fate, and is therefore considered a master control gene for lymphangiogenesis in mammals. In zebrafish, there are two prox1 paralogues, the previously described prox1 (also known as prox1a) and the newly identified prox1b. Principal Findings: To investigate the role of the prox1b gene in zebrafish lymphangiogenesis, we knocked-down prox1b and found that depletion of prox1b mRNA did not cause lymphatic defects. We also generated two different prox1b mutant alleles, and maternal-zygotic homozygous mutant embryos were viable and did not show any lymphatic defects. Furthermore, the expression of prox1b was not restricted to lymphatic vessels during zebrafish development. Conclusion: We conclude that Prox1b activity is not essential for embryonic lymphatic development in zebrafish

    Single-cell profiling and zebrafish avatars reveal LGALS1 as immunomodulating target in glioblastoma

    Get PDF
    Glioblastoma (GBM) remains the most malignant primary brain tumor, with a median survival rarely exceeding 2 years. Tumor heterogeneity and an immunosuppressive microenvironment are key factors contributing to the poor response rates of current therapeutic approaches. GBM-associated macrophages (GAMs) often exhibit immunosuppressive features that promote tumor progression. However, their dynamic interactions with GBM tumor cells remain poorly understood. Here, we used patient-derived GBM stem cell cultures and combined single-cell RNA sequencing of GAM-GBM co-cultures and real-time in vivo monitoring of GAM-GBM interactions in orthotopic zebrafish xenograft models to provide insight into the cellular, molecular, and spatial heterogeneity. Our analyses revealed substantial heterogeneity across GBM patients in GBM-induced GAM polarization and the ability to attract and activate GAMs—features that correlated with patient survival. Differential gene expression analysis, immunohistochemistry on original tumor samples, and knock-out experiments in zebrafish subsequently identified LGALS1 as a primary regulator of immunosuppression. Overall, our work highlights that GAM-GBM interactions can be studied in a clinically relevant way using co-cultures and avatar models, while offering new opportunities to identify promising immune-modulating targets

    Allogeneic Hematopoietic Stem Cell Transplantation After Prior Lung Transplantation for Hereditary Pulmonary Alveolar Proteinosis: A Case Report

    Get PDF
    Pulmonary alveolar proteinosis (PAP) is a rare, diffuse lung disorder characterized by surfactant accumulation in the small airways due to defective clearance by alveolar macrophages, resulting in impaired gas exchange. Whole lung lavage is the current standard of care treatment for PAP. Lung transplantation is an accepted treatment option when whole lung lavage or other experimental treatment options are ineffective, or in case of extensive pulmonary fibrosis secondary to PAP. A disadvantage of lung transplantation is recurrence of PAP in the transplanted lungs, especially in hereditary PAP. The hereditary form of PAP is an ultra-rare condition caused by genetic mutations in genes encoding for the granulocyte macrophage-colony stimulating factor (GM-CSF) receptor, and intrinsically affects bone marrow derived-monocytes, which differentiate into macrophages in the lung. Consequently, these macrophages typically display disrupted GM-CSF receptor-signaling, causing defective surfactant clearance. Bone marrow/hematopoietic stem cell transplantation may potentially reverse the lung disease in hereditary PAP. In patients with hereditary PAP undergoing lung transplantation, post-lung transplant recurrence of PAP may theoretically be averted by subsequent hematopoietic stem cell transplantation, which results in a graft-versus-disease (PAP) effect, and thus could improve long-term outcome. We describe the successful long-term post-transplant outcome of a unique case of end-stage respiratory failure due to hereditary PAP-induced pulmonary fibrosis, successfully treated by bilateral lung transplantation and subsequent allogeneic hematopoietic stem cell transplantation. Our report supports treatment with serial lung and hematopoietic stem cell transplantation to improve quality of life and prolong survival, without PAP recurrence, in selected patients with end-stage hereditary PAP

    Blood flow drives lumen formation by inverse membrane blebbing during angiogenesis in vivo

    Get PDF
    How vascular tubes build, maintain and adapt continuously perfused lumens to meet local metabolic needs remains poorly understood. Recent studies showed that blood flow itself plays a critical role in the remodelling of vascular networks, and suggested it is also required for the lumenization of new vascular connections. However, it is still unknown how haemodynamic forces contribute to the formation of new vascular lumens during blood vessel morphogenesis. Here we report that blood flow drives lumen expansion during sprouting angiogenesis in vivo by inducing spherical deformations of the apical membrane of endothelial cells, in a process that we have termed inverse blebbing. We show that endothelial cells react to these membrane intrusions by local and transient recruitment and contraction of actomyosin, and that this mechanism is required for single, unidirectional lumen expansion in angiogenic sprouts. Our work identifies inverse membrane blebbing as a cellular response to high external pressure. We show that in the case of blood vessels such membrane dynamics can drive local cell shape changes required for global tissue morphogenesis, shedding light on a pressure-driven mechanism of lumen formation in vertebrates

    Dynamic endothelial cell rearrangements drive developmental vessel regression

    Get PDF
    Patterning of functional blood vessel networks is achieved by pruning of superfluous connections. The cellular and molecular principles of vessel regression are poorly understood. Here we show that regression is mediated by dynamic and polarized migration of endothelial cells, representing anastomosis in reverse. Establishing and analyzing the first axial polarity map of all endothelial cells in a remodeling vascular network, we propose that balanced movement of cells maintains the primitive plexus under low shear conditions in a metastable dynamic state. We predict that flow-induced polarized migration of endothelial cells breaks symmetry and leads to stabilization of high flow/shear segments and regression of adjacent low flow/shear segments.status: publishe
    • …
    corecore