18 research outputs found

    Extensive weight loss reveals distinct gene expression changes in human subcutaneous and visceral adipose tissue

    Get PDF
    Weight loss has been shown to significantly improve Adipose tissue (AT) function, however changes in AT gene expression profiles particularly in visceral AT (VAT) have not been systematically studied. Here, we tested the hypothesis that extensive weight loss in response to bariatric surgery (BS) causes AT gene expression changes, which may affect energy and lipid metabolism, inflammation and secretory function of AT. We assessed gene expression changes by whole genome expression chips in AT samples obtained from six morbidly obese individuals, who underwent a two step BS strategy with sleeve gastrectomy as initial and a Roux-en-Y gastric bypass as second step surgery after 12 ± 2 months. Global gene expression differences in VAT and subcutaneous (S)AT were analyzed through the use of genome-scale metabolic model (GEM) for adipocytes. Significantly altered gene expressions were PCR-validated in 16 individuals, which also underwent a two-step surgery intervention. We found increased expression of cell death-inducing DFFA-like effector a (CIDEA), involved in formation of lipid droplets in both fat depots in response to significant weight loss. We observed that expression of the genes associated with metabolic reactions involved in NAD+, glutathione and branched chain amino acid metabolism are significantly increased in AT depots after surgery-induced weight loss

    Extensive weight loss reveals distinct gene expression changes in human subcutaneous and visceral adipose tissue

    Get PDF
    Weight loss has been shown to significantly improve Adipose tissue (AT) function, however changes in AT gene expression profiles particularly in visceral AT (VAT) have not been systematically studied. Here, we tested the hypothesis that extensive weight loss in response to bariatric surgery (BS) causes AT gene expression changes, which may affect energy and lipid metabolism, inflammation and secretory function of AT. We assessed gene expression changes by whole genome expression chips in AT samples obtained from six morbidly obese individuals, who underwent a two step BS strategy with sleeve gastrectomy as initial and a Roux-en-Y gastric bypass as second step surgery after 12 ± 2 months. Global gene expression differences in VAT and subcutaneous (S)AT were analyzed through the use of genome-scale metabolic model (GEM) for adipocytes. Significantly altered gene expressions were PCR-validated in 16 individuals, which also underwent a two-step surgery intervention. We found increased expression of cell death-inducing DFFA-like effector a (CIDEA), involved in formation of lipid droplets in both fat depots in response to significant weight loss. We observed that expression of the genes associated with metabolic reactions involved in NAD+, glutathione and branched chain amino acid metabolism are significantly increased in AT depots after surgery-induced weight loss

    Nicotinamide nucleotide transhydrogenase (NNT) mRNA expression is related to human obesity

    Get PDF
    If has been proposed that a spontaneous deletion in the nicotinamide nucleotide transhydrogenase (Nnt) gene eliminating exons 7-11 in C57BL/6J (B6J) mice is associated with reduced glucose-stimulated insulin secretion in vitro, impaired glucose tolerance, higher epigonadal fat mass and altered susceptibility to diet induced obesity (DIO) of male B6J mice. A potential implication for NNT in human adipose tissue distribution has not been investigated so far. We therefore analyzed NNT mRNA expression in paired human samples of visceral (vis) and subcutaneous (sc) adipose tissue from 221 subjects with a wide range of BMI, insulin sensitivity and glucose tolerance. NNT mRNA expression is significantly higher in visceral fat of obese patients and correlates with body weight, BMI, % body fat, visceral and sc fat area, waist and hip circumference as well fasting plasma insulin. Multivariate linear regression analysis revealed visceral fat area, and % body fat, but not fasting plasma insulin and 2h OGTT glucose. In conclusion, our data suggest a functional relevance of NNT in the development of human obesity and visceral fat distribution

    Effects of Weight Loss on Glutathione Peroxidase 3 Serum Concentrations and Adipose Tissue Expression in Human Obesity

    Get PDF
    Background/Aims: Altered expression and circulating levels of glutathione peroxidase 3 (GPX3) have been observed in obesity and type 2 diabetes (T2D) across species. Here, we investigate whether GPX3 serum concentrations and adipose tissue (AT) GPX3 mRNA expression are related to obesity and weight loss. Methods: GPX3 serum concentration was measured in 630 individuals, including a subgroup (n = 293) for which omental and subcutaneous (SC) GPX3 mRNA expression has been analyzed. GPX3 analyses include three interventions: 6 months after bariatric surgery (n = 80) or combined exercise/hypocaloric diet (n = 20) or two-step bariatric surgery (n = 24) studies. Results: Bariatric surgery-induced weight loss (–25.8 ± 8.4%), but not a moderate weight reduction of –8.8 ± 6.5% was associated with significantly reduced GPX3 serum concentrations. GPX3 mRNA is significantly higher expressed in AT from individuals with normal glucose metabolism compared to T2D patients. SC AT GPX3 expression is significantly higher in lean compared to obese as well as in insulin-sensitive compared insulin-resistant individuals with obesity. Weight loss after bariatric surgery causes a significant increase in SC AT GPX3 expression. AT GPX3 expression significantly correlates with age, BMI, fat distribution, insulin sensitivity (only SC AT), but not with circulating GPX3. Conclusion: Our data support the notion that SC AT GPX3 expression is associated with obesity, fat distribution and related to whole body insulin resistance

    Identification of genetic loci associated with different responses to high-fat diet-induced obesity in C57BL/6N and C57BL/6J substrains

    Get PDF
    We have recently demonstrated that C57BL/6NTac and C57BL/6JRj substrains are significantly different in their response to high-fat diet-induced obesity (DIO). The C57BL/6JRj substrain seems to be protected from DIO and genetic differences between C57BL/6J and C57BL/6N substrains at 11 single nucleotide polymorphism (SNP) loci have been identified. To define genetic variants as well as differences in parameters of glucose homeostasis and insulin sensitivity between C57BL/6NTac and C57BL/6JRj substrains that may explain the different response to DIO, we analyzed 208 first backcross (BC1) hybrids of C57BL/6NTac and C57BL/6JRj [(C57BL/6NTac Ă— C57BL/6JRj)F1 Ă— C57BL/6NTac] mice. Body weight, epigonadal and subcutaneous fat mass, circulating leptin, as well as parameters of glucose metabolism were measured after 10 wk of high-fat diet (HFD). Genetic profiling of BC1 hybrids were performed using TaqMan SNP genotyping assays. Furthermore, to assess whether SNP polymorphisms could affect mRNA level, we carried out gene expression analysis in murine liver samples. Human subcutaneous adipose tissue was used to verify murine data of SNAP29. We identified four sex-specific variants that are associated with the extent of HFD-induced weight gain and fat depot mass. BC1 hybrids carrying the combination of risk or beneficial alleles exhibit the phenotypical extremes of the parental strains. Murine and human SC expression analysis revealed Snap29 as strongest candidate. Our data indicate an important role of these loci in responsiveness to HFD-induced obesity and suggest genes of the synaptic vesicle release system such as Snap29 being involved in the regulation of high-fat DIO

    Nicotinamide nucleotide transhydrogenase (NNT) mRNA expression is related to human obesity

    No full text
    If has been proposed that a spontaneous deletion in the nicotinamide nucleotide transhydrogenase (Nnt) gene eliminating exons 7-11 in C57BL/6J (B6J) mice is associated with reduced glucose-stimulated insulin secretion in vitro, impaired glucose tolerance, higher epigonadal fat mass and altered susceptibility to diet induced obesity (DIO) of male B6J mice. A potential implication for NNT in human adipose tissue distribution has not been investigated so far. We therefore analyzed NNT mRNA expression in paired human samples of visceral (vis) and subcutaneous (sc) adipose tissue from 221 subjects with a wide range of BMI, insulin sensitivity and glucose tolerance. NNT mRNA expression is significantly higher in visceral fat of obese patients and correlates with body weight, BMI, % body fat, visceral and sc fat area, waist and hip circumference as well fasting plasma insulin. Multivariate linear regression analysis revealed visceral fat area, and % body fat, but not fasting plasma insulin and 2h OGTT glucose. In conclusion, our data suggest a functional relevance of NNT in the development of human obesity and visceral fat distribution

    Identification of Adipokine Clusters Related to Parameters of Fat Mass, Insulin Sensitivity and Inflammation

    No full text
    <div><p>In obesity, elevated fat mass and ectopic fat accumulation are associated with changes in adipokine secretion, which may link obesity to inflammation and the development of insulin resistance. However, relationships among individual adipokines and between adipokines and parameters of obesity, glucose metabolism or inflammation are largely unknown. Serum concentrations of 20 adipokines were measured in 141 Caucasian obese men (n = 67) and women (n = 74) with a wide range of body weight, glycemia and insulin sensitivity. Unbiased, distance-based hierarchical cluster analyses were performed to recognize patterns among adipokines and their relationship with parameters of obesity, glucose metabolism, insulin sensitivity and inflammation. We identified two major adipokine clusters related to either (1) body fat mass and inflammation (leptin, ANGPTL3, DLL1, chemerin, Nampt, resistin) or insulin sensitivity/hyperglycemia, and lipid metabolism (vaspin, clusterin, glypican 4, progranulin, ANGPTL6, GPX3, RBP4, DLK1, SFRP5, BMP7, adiponectin, CTRP3 and 5, omentin). In addition, we found distinct adipokine clusters in subgroups of patients with or without type 2 diabetes (T2D). Logistic regression analyses revealed ANGPTL6, DLK1, Nampt and progranulin as strongest adipokine correlates of T2D in obese individuals. The panel of 20 adipokines predicted T2D compared to a combination of HbA1c, HOMA-IR and fasting plasma glucose with lower sensitivity (78% versus 91%) and specificity (76% versus 94%). Therefore, adipokine patterns may currently not be clinically useful for the diagnosis of metabolic diseases. Whether adipokine patterns are relevant for the predictive assessment of intervention outcomes needs to be further investigated.</p></div

    Extensive weight loss reveals distinct gene expression changes in human subcutaneous and visceral adipose tissue

    No full text
    Weight loss has been shown to significantly improve Adipose tissue (AT) function, however changes in AT gene expression profiles particularly in visceral AT (VAT) have not been systematically studied. Here, we tested the hypothesis that extensive weight loss in response to bariatric surgery (BS) causes AT gene expression changes, which may affect energy and lipid metabolism, inflammation and secretory function of AT. We assessed gene expression changes by whole genome expression chips in AT samples obtained from six morbidly obese individuals, who underwent a two step BS strategy with sleeve gastrectomy as initial and a Roux-en-Y gastric bypass as second step surgery after 12 ± 2 months. Global gene expression differences in VAT and subcutaneous (S)AT were analyzed through the use of genome-scale metabolic model (GEM) for adipocytes. Significantly altered gene expressions were PCR-validated in 16 individuals, which also underwent a two-step surgery intervention. We found increased expression of cell death-inducing DFFA-like effector a (CIDEA), involved in formation of lipid droplets in both fat depots in response to significant weight loss. We observed that expression of the genes associated with metabolic reactions involved in NAD+, glutathione and branched chain amino acid metabolism are significantly increased in AT depots after surgery-induced weight loss

    Effects of different anti-diabetic pharmacotherapies on adipokine serum concentrations.

    No full text
    <p>Comparison of adipokine serum concentrations in patients treated with or without metformin in monotherapy or in combination with GLP-1 analogues and insulin, as well as insulin monotherapy. Only significant differences between the different treatment regimens are displayed. Treatment with sulfonylurea, pioglitazone or DPP-4 inhibitors did not significantly affect serum adipokine concentrations.</p

    Extensive weight loss reveals distinct gene expression changes in human subcutaneous and visceral adipose tissue

    No full text
    Weight loss has been shown to significantly improve Adipose tissue (AT) function, however changes in AT gene expression profiles particularly in visceral AT (VAT) have not been systematically studied. Here, we tested the hypothesis that extensive weight loss in response to bariatric surgery (BS) causes AT gene expression changes, which may affect energy and lipid metabolism, inflammation and secretory function of AT. We assessed gene expression changes by whole genome expression chips in AT samples obtained from six morbidly obese individuals, who underwent a two step BS strategy with sleeve gastrectomy as initial and a Roux-en-Y gastric bypass as second step surgery after 12 ± 2 months. Global gene expression differences in VAT and subcutaneous (S)AT were analyzed through the use of genome-scale metabolic model (GEM) for adipocytes. Significantly altered gene expressions were PCR-validated in 16 individuals, which also underwent a two-step surgery intervention. We found increased expression of cell death-inducing DFFA-like effector a (CIDEA), involved in formation of lipid droplets in both fat depots in response to significant weight loss. We observed that expression of the genes associated with metabolic reactions involved in NAD+, glutathione and branched chain amino acid metabolism are significantly increased in AT depots after surgery-induced weight loss
    corecore