91 research outputs found

    The Tet3 interactome

    Get PDF

    Electronic properties of the pseudogap system (TaSe4)2I

    Full text link
    The room temperature ``metallic'' properties of the quasi-one-dimensional charge density wave system (TaSe4)2I differ markedly from those expected of either a Fermi or a Luttinger Liquid. We discuss evidence for the simplest possible explanation of the observed behavior of (TaSe4)2I in its conducting phase - namely the existence of large quasi-static fluctuations of structural order, which however remain of finite extent above the charge density wave transition temperature. These fluctuations produce a pseudogap in the density of states. We compute the temperature dependence of the optical and DC conductivities of (TaSe4)2I in its conducting phase, the nature of its core hole spectra, and the NMR relaxation rate. Predictions for these quantities are made on the basis of a Lee, Rice and Anderson model. This model represents the simplest theory of a pseudogap, and gives satisfactory agreement with experiment in the cases where comparisons can be made. In contrast, the predictions of a strongly correlated (Luttinger Liquid) model appear to to contradict the data. The chief remaining discrepancy is that the gap appearing in transport quantities is less than that observed in photoemission. We discuss some possibilities for resolving this issue.Comment: 41 pages latex, 11 ps figures, uses IOP macro

    Spin-Waves in the Mid-Infrared Spectrum of Antiferromagnetic YBa2_2Cu3_3O6.0_{6.0}

    Full text link
    The mid-infrared spin-wave spectrum of antiferromagnetic YBa2_2Cu3_3O6.0_{6.0}\ was determined by infrared transmission and reflection measurements (\bbox{k} \!\! \parallel c) at T ⁣= ⁣10 ⁣T\!=\!10\!~K.\@ Excitation of single magnons of the optical branch was observed at Eop ⁣= ⁣178.0 ⁣E_{\text{op}}\!=\!178.0\!~meV.\@ Two further peaks at 346 ⁣346\!~meV ( ⁣1.94Eop\approx\!1.94\,E_{\text{op}}) and 470 ⁣470\!~meV ( ⁣2.6Eop\approx\!2.6\,E_{\text{op}}) both belong to the two-magnon spectrum. Linear spin wave theory is in good agreement with the measured two-magnon spectrum, and allows to determine the exchange constant JJ to be about 120 ⁣120\!~meV, whereas the intrabilayer coupling J12J_{12} is approximately 0.55J0.55\,J.Comment: 3 figures in uuencoded for

    Optical investigation of the charge-density-wave phase transitions in NbSe3NbSe_{3}

    Full text link
    We have measured the optical reflectivity R(ω)R(\omega) of the quasi one-dimensional conductor NbSe3NbSe_{3} from the far infrared up to the ultraviolet between 10 and 300 KK using light polarized along and normal to the chain axis. We find a depletion of the optical conductivity with decreasing temperature for both polarizations in the mid to far-infrared region. This leads to a redistribution of spectral weight from low to high energies due to partial gapping of the Fermi surface below the charge-density-wave transitions at 145 K and 59 K. We deduce the bulk magnitudes of the CDW gaps and discuss the scattering of ungapped free charge carriers and the role of fluctuations effects

    Optical conductivity of a quasi-one-dimensional system with fluctuating order

    Full text link
    We describe a formally exact method to calculate the optical conductivity of a one-dimensional system with fluctuating order. For classical phase fluctuations we explicitly determine the optical conductivity by solving two coupled Fokker-Planck equations numerically. Our results differ considerably from perturbation theory and in contrast to Gaussian order parameter fluctuations show a strong dependence on the correlation length.Comment: 7 pages, 2 figure

    Anisotropic optical properties of single-crystal GdBa2Cu3O7-delta

    Get PDF
    The optical spectrum of reduced-T(c) GdBa2Cu3O7-delta has been measured for polarizations parallel and perpendicular to the ab plane. The sample was an oxygen-deficient single crystal with a large face containing the c axis. The polarized reflectance from this face was measured from 20-300 K in the spectral region from 30-3000 cm-1, with 300 K data to 30 000 cm-1. Kramers-Kronig analysis was used to determine the spectral dependence of the ab and the c components of the dielectric tensor. The optical properties are strongly anisotropic. The ab-plane response resembles that of other reduced-T(c) materials whereas the c axis, in contrast, shows only the presence of several phonons. There is a complete absence of charge carrier response along c above and below T(c). This observation allows us to set an upper limit to the free-carrier spectral weight for transport perpendicular to the CuO2 planes

    Metabolic analysis of vitreous/lens and retina in wild type and retinal degeneration mice

    Get PDF
    Photoreceptors are the light-sensing cells of the retina and the major cell type affected in most inherited retinal degenerations. Different metabolic pathways sustain their high energetic demand in physiological conditions, particularly aerobic glycolysis. The principal metabolome of the mature retina has been studied, but only limited information is available on metabolic adaptations in response to key developmental events, such as eye opening. Moreover, dynamic metabolic changes due to retinal degeneration are not well understood. Here, we aimed to explore and map the ocular metabolic dynamics induced by eye opening in healthy (wild type) or Pde6b-mutant (retinal degeneration 1, Rd1) mice, in which photoreceptors degenerate shortly after eye opening. To unravel metabolic differences emerging before and after eye opening under physiological and pathophysiological conditions, we performed nuclear magnetic resonance (NMR) spectrosco-py-based metabolome analysis of wild type and Rd1 retina and vitreous/lens. We show that eye opening is accompanied by changes in the concentration of selected metabolites in the retina and by alterations in the vitreous/lens composition only in the retinal degeneration context. As such, we identify N-Acetylaspartate as a potential novel vitreous/lens marker reflecting progressive retinal degeneration. Thus, our data can help elucidating mechanisms underlying key events in retinal physiology and reveal changes occurring in pathology, while highlighting the importance of the vitreous/lens in the characterization of retinal diseases.Proteomic

    Highly conducting perylene radical salts

    Get PDF
    Temperature dependent dc and microwave conductivity data together with EPR and optical reflectance measurements on the "mixed" system (pe)2(ASF6)0,75(PF6)0,35 times 0,85 CH2Cl2 are described. The data prove metallic behaviour of this organic solid down to 200 K

    Optical study of orbital excitations in transition-metal oxides

    Get PDF
    The orbital excitations of a series of transition-metal compounds are studied by means of optical spectroscopy. Our aim was to identify signatures of collective orbital excitations by comparison with experimental and theoretical results for predominantly local crystal-field excitations. To this end, we have studied TiOCl, RTiO3 (R=La, Sm, Y), LaMnO3, Y2BaNiO5, CaCu2O3, and K4Cu4OCl10, ranging from early to late transition-metal ions, from t_2g to e_g systems, and including systems in which the exchange coupling is predominantly three-dimensional, one-dimensional or zero-dimensional. With the exception of LaMnO3, we find orbital excitations in all compounds. We discuss the competition between orbital fluctuations (for dominant exchange coupling) and crystal-field splitting (for dominant coupling to the lattice). Comparison of our experimental results with configuration-interaction cluster calculations in general yield good agreement, demonstrating that the coupling to the lattice is important for a quantitative description of the orbital excitations in these compounds. However, detailed theoretical predictions for the contribution of collective orbital modes to the optical conductivity (e.g., the line shape or the polarization dependence) are required to decide on a possible contribution of orbital fluctuations at low energies, in particular in case of the orbital excitations at about 0.25 eV in RTiO3. Further calculations are called for which take into account the exchange interactions between the orbitals and the coupling to the lattice on an equal footing.Comment: published version, discussion of TiOCl extended to low T, improved calculation of orbital excitation energies in TiOCl, figure 16 improved, references updated, 33 pages, 20 figure

    Redirected nuclear glutamate dehydrogenase supplies Tet3 with alpha-ketoglutarate in neurons

    Get PDF
    Tet3 is the main alpha -ketoglutarate (alpha KG)-dependent dioxygenase in neurons that converts 5-methyl-dC into 5-hydroxymethyl-dC and further on to 5-formyl- and 5-carboxy-dC. Neurons possess high levels of 5-hydroxymethyl-dC that further increase during neural activity to establish transcriptional plasticity required for learning and memory functions. How alpha KG, which is mainly generated in mitochondria as an intermediate of the tricarboxylic acid cycle, is made available in the nucleus has remained an unresolved question in the connection between metabolism and epigenetics. We show that in neurons the mitochondrial enzyme glutamate dehydrogenase, which converts glutamate into alpha KG in an NAD(+)-dependent manner, is redirected to the nucleus by the alpha KG-consumer protein Tet3, suggesting on-site production of alpha KG. Further, glutamate dehydrogenase has a stimulatory effect on Tet3 demethylation activity in neurons, and neuronal activation increases the levels of alpha KG. Overall, the glutamate dehydrogenase-Tet3 interaction might have a role in epigenetic changes during neural plasticity. alpha -ketoglutarate (alpha KG) is an intermediate in the tricarboxylic acid cycle that is required in the nucleus for genomic DNA demethylation by Tet3. Here, the authors show that the enzyme glutamate dehydrogenase, which converts glutamate to alpha KG, is redirected from the mitochondria to the nucleus.Proteomic
    corecore