56 research outputs found

    t(2;8)(q12;p11) RANBP2/FGFR1

    Get PDF
    Review on t(4;10)(q12;q23) PDGFRA/TNKS

    Supramolecular assembly of gelatin and inorganic polyanions: Fine-tuning the mechanical properties of nanocomposites by varying their composition and microstructure

    Get PDF
    A series of bionanocomposites has been synthesized through a complex coacervation process inducing the assembly of gelatin with a wide range of inorganic polyanions (IPyAs) differing by their diameter and charge and including polyoxometalates (POMs) and a polythiomolybdate cluster. The microstructure and stoichiometry of these hybrid coacervates, which are strongly dependent on the charge matching between both components, have been studied by combining Fourier transform infrared (FT-IR) spectroscopy, solid-state nuclear magnetic resonance (NMR), thermogravimetric analysis (TGA), elemental analysis, differential scanning calorimetry (DSC), scanning electron microscopy (SEM), and energy-dispersive X-ray (EDX) elemental mapping. The mechanical properties of these materials were deeply characterized by tensile measurements at large deformation, revealing different behaviors (i.e., elastomer and ductile), depending on the nature of the IPyA. It is noteworthy that the mechanical properties of these bionanocomposites are strongly enhanced, compared to pure gelatin hydrogels. When attempting to connect structure and properties in these bionanocomposites, we have demonstrated that the density of cross-links (gelatin triple helices and IPyA) is the key parameter to control the extensibility of these materials

    Myeloid cell differentiation arrest by miR-125b-1 in myelodysplasic syndrome and acute myeloid leukemia with the t(2;11)(p21;q23) translocation

    Get PDF
    Most chromosomal translocations in myelodysplastic syndromes (MDS) and acute myeloid leukemia (AML) involve oncogenes that are either up-regulated or form part of new chimeric genes. The t(2;11)(p21;q23) translocation has been cloned in 19 cases of MDS and AML. In addition to this, we have shown that this translocation is associated with a strong up-regulation of miR-125b (from 6- to 90-fold). In vitro experiments revealed that miR-125b was able to interfere with primary human CD34+ cell differentiation, and also inhibited terminal (monocytic and granulocytic) differentiation in HL60 and NB4 leukemic cell lines. Therefore, miR-125b up-regulation may represent a new mechanism of myeloid cell transformation, and myeloid neoplasms carrying the t(2;11) translocation define a new clinicopathological entity

    Alveolar echinococcosis in solid organ transplant recipients: a case series from two national cohorts

    Get PDF
    Alveolar echinococcosis (AE) is a severe parasitic infection caused by the ingestion of Echinococcus multilocularis eggs. While higher incidence and faster evolution have been reported in immunosuppressed patients, no studies have been performed specifically on AE in transplant patients. We searched for all de novo AE cases diagnosed between January 2008 and August 2018 in solid organ transplant (SOT) recipients included in the Swiss Transplant Cohort Study and the FrancEchino Registry. Eight cases were identified (kidney = 5, lung = 2, heart = 1, liver = 0), half of which were asymptomatic at diagnosis. AE diagnosis was difficult due to the low sensitivity (60%) of the standard screening serology (Em2+) and the frequently atypical radiological presentations. Conversely, Echinococcus Western blot retained good diagnostic performances and was positive in all eight cases. Five patients underwent surgery, but complete resection could only be achieved in one case. Moreover, two patients died of peri-operative complications. Albendazole was initiated in seven patients and was well tolerated. Overall, AE regressed in one, stabilized in three, and progressed in one case, and had an overall mortality of 37.5% (3/8 patients). Our data suggest that AE has a higher mortality and a faster clinical course in SOT recipients; they also suggest that the parasitic disease might be due to the reactivation of latent microscopic liver lesions through immune suppression. Western blot serology should be preferred in this population. Finally, surgery should be considered with caution, because of its low success rate and high mortality, and conservative treatment with albendazole is well tolerated

    The CADM1 tumor suppressor gene is a major candidate gene in MDS with deletion of the long arm of chromosome 11.

    Get PDF
    Myelodysplastic syndromes (MDS) represent a heterogeneous group of clonal hematopoietic stem cell disorders characterized by ineffective hematopoiesis leading to peripheral cytopenias and in a substantial proportion of cases to acute myeloid leukemia. The deletion of the long arm of chromosome 11, del(11q), is a rare but recurrent clonal event in MDS. Here, we detail the largest series of 113 cases of MDS and myelodysplastic syndromes/myeloproliferative neoplasms (MDS/MPN) harboring a del(11q) analyzed at clinical, cytological, cytogenetic, and molecular levels. Female predominance, a survival prognosis similar to other MDS, a low monocyte count, and dysmegakaryopoiesis were the specific clinical and cytological features of del(11q) MDS. In most cases, del(11q) was isolated, primary and interstitial encompassing the 11q22-23 region containing ATM, KMT2A, and CBL genes. The common deleted region at 11q23.2 is centered on an intergenic region between CADM1 (also known as Tumor Suppressor in Lung Cancer 1) and NXPE2. CADM1 was expressed in all myeloid cells analyzed in contrast to NXPE2. At the functional level, the deletion of Cadm1 in murine Lineage-Sca1+Kit+ cells modifies the lymphoid-to-myeloid ratio in bone marrow, although not altering their multilineage hematopoietic reconstitution potential after syngenic transplantation. Together with the frequent simultaneous deletions of KMT2A, ATM, and CBL and mutations of ASXL1, SF3B1, and CBL, we show that CADM1 may be important in the physiopathology of the del(11q) MDS, extending its role as tumor-suppressor gene from solid tumors to hematopoietic malignancies

    Consensus guidelines for the definition of time-to-event end points in image-guided tumor ablation: results of the SIO and DATECAN initiative

    Get PDF
    International audienceThere is currently no consensus regarding preferred clinical outcome measures following image-guided tumor ablation or clear definitions of oncologic end points. This consensus document proposes standardized definitions for a broad range of oncologic outcome measures with recommendations on how to uniformly document, analyze, and report outcomes. The initiative was coordinated by the Society of Interventional Oncology in collaboration with the Definition for the Assessment of Time-to-Event End Points in Cancer Trials, or DATECAN, group. According to predefined criteria, based on experience with clinical trials, an international panel of 62 experts convened. Recommendations were developed using the validated three-step modified Delphi consensus method. Consensus was reached on when to assess outcomes per patient, per session, or per tumor; on starting and ending time and survival time definitions; and on time-to-event end points. Although no consensus was reached on the preferred classification system to report complications, quality of life, and health economics issues, the panel did agree on using the most recent version of a validated patient-reported outcome questionnaire. This article provides a framework of key opinion leader recommendations with the intent to facilitate a clear interpretation of results and standardize worldwide communication. Widespread adoption will improve reproducibility, allow for accurate comparisons, and avoid misinterpretations in the field of interventional oncology research. Published under a CC BY 4.0 license. Online supplemental material is available for this article. See also the editorial by Liddell in this issue

    Vaccine breakthrough hypoxemic COVID-19 pneumonia in patients with auto-Abs neutralizing type I IFNs

    Full text link
    Life-threatening `breakthrough' cases of critical COVID-19 are attributed to poor or waning antibody response to the SARS- CoV-2 vaccine in individuals already at risk. Pre-existing autoantibodies (auto-Abs) neutralizing type I IFNs underlie at least 15% of critical COVID-19 pneumonia cases in unvaccinated individuals; however, their contribution to hypoxemic breakthrough cases in vaccinated people remains unknown. Here, we studied a cohort of 48 individuals ( age 20-86 years) who received 2 doses of an mRNA vaccine and developed a breakthrough infection with hypoxemic COVID-19 pneumonia 2 weeks to 4 months later. Antibody levels to the vaccine, neutralization of the virus, and auto- Abs to type I IFNs were measured in the plasma. Forty-two individuals had no known deficiency of B cell immunity and a normal antibody response to the vaccine. Among them, ten (24%) had auto-Abs neutralizing type I IFNs (aged 43-86 years). Eight of these ten patients had auto-Abs neutralizing both IFN-a2 and IFN-., while two neutralized IFN-omega only. No patient neutralized IFN-ss. Seven neutralized 10 ng/mL of type I IFNs, and three 100 pg/mL only. Seven patients neutralized SARS-CoV-2 D614G and the Delta variant (B.1.617.2) efficiently, while one patient neutralized Delta slightly less efficiently. Two of the three patients neutralizing only 100 pg/mL of type I IFNs neutralized both D61G and Delta less efficiently. Despite two mRNA vaccine inoculations and the presence of circulating antibodies capable of neutralizing SARS-CoV-2, auto-Abs neutralizing type I IFNs may underlie a significant proportion of hypoxemic COVID-19 pneumonia cases, highlighting the importance of this particularly vulnerable population
    corecore