8,233 research outputs found
Physics at SuperB
Flavour will play a crucial role in understanding physics beyond the Standard
Model. Progress in developing a future programme to investigate this central
area of particle physics has recently passed a milestone, with the completion
of the conceptual design report for SuperB, a very high luminosity, asymmetric
e+e- collider. This article summarizes the important role of SuperB in
understanding new physics in the LHC era.Comment: 4 pages, 2 figures. To appear in the proceedings of the International
Europhysics Conference on High Energy Physics (EPS-HEP2007), Manchester,
England, 19-25 July 200
Detection of non-Gaussian Fluctuations in a Quantum Point Contact
An experimental study of current fluctuations through a tunable transmission
barrier, a quantum point contact, are reported. We measure the probability
distribution function of transmitted charge with precision sufficient to
extract the first three cumulants. To obtain the intrinsic quantities,
corresponding to voltage-biased barrier, we employ a procedure that accounts
for the response of the external circuit and the amplifier. The third cumulant,
obtained with a high precision, is found to agree with the prediction for the
statistics of transport in the non-Poissonian regime.Comment: 4 pages, 4 figures; published versio
Scalable solid-state quantum processor using subradiant two-atom states
We propose a realization of a scalable, high-performance quantum processor
whose qubits are represented by the ground and subradiant states of effective
dimers formed by pairs of two-level systems coupled by resonant dipole-dipole
interaction. The dimers are implanted in low-temperature solid host material at
controllable nanoscale separations. The two-qubit entanglement either relies on
the coherent excitation exchange between the dimers or is mediated by external
laser fields.Comment: 4 pages, 3 figure
First determination of the content of and updated determination of the contents of and
Quantum-correlated decays collected by the CLEO-c
experiment are used to perform a first measurement of , the
fractional -even content of the self-conjugate decay , obtaining a value of . An important
input to the measurement comes from the use of
and decays to tag the signal mode. This same
technique is applied to the channels and , yielding and
, where the first uncertainty is
statistical and the second systematic. These measurements are consistent with
those of an earlier analysis, based on -eigenstate tags, and can be
combined to give values of and
. The results will enable the three modes to
be included in a model-independent manner in measurements of the unitarity
triangle angle using decays, and in time-dependent
studies of violation and mixing in the system.Comment: Minor revisions following journal acceptanc
Measurement of Counting Statistics of Electron Transport in a Tunnel Junction
We present measurements of the time-dependent fluctuations in electrical
current in a voltage-biased tunnel junction. We were able to simultaneously
extract the first three moments of the tunnel current counting statistics.
Detailed comparison of the second and the third moment reveals that counting
statistics is accurately described by the Poissonian distribution expected for
spontaneous current fluctuations due to electron charge discreteness, realized
in tunneling transport at negligible coupling to environment.Comment: bibliography expande
- …