41 research outputs found

    ProtoDESI: First On-Sky Technology Demonstration for the Dark Energy Spectroscopic Instrument

    Full text link
    The Dark Energy Spectroscopic Instrument (DESI) is under construction to measure the expansion history of the universe using the baryon acoustic oscillations technique. The spectra of 35 million galaxies and quasars over 14,000 square degrees will be measured during a 5-year survey. A new prime focus corrector for the Mayall telescope at Kitt Peak National Observatory will deliver light to 5,000 individually targeted fiber-fed robotic positioners. The fibers in turn feed ten broadband multi-object spectrographs. We describe the ProtoDESI experiment, that was installed and commissioned on the 4-m Mayall telescope from August 14 to September 30, 2016. ProtoDESI was an on-sky technology demonstration with the goal to reduce technical risks associated with aligning optical fibers with targets using robotic fiber positioners and maintaining the stability required to operate DESI. The ProtoDESI prime focus instrument, consisting of three fiber positioners, illuminated fiducials, and a guide camera, was installed behind the existing Mosaic corrector on the Mayall telescope. A Fiber View Camera was mounted in the Cassegrain cage of the telescope and provided feedback metrology for positioning the fibers. ProtoDESI also provided a platform for early integration of hardware with the DESI Instrument Control System that controls the subsystems, provides communication with the Telescope Control System, and collects instrument telemetry data. Lacking a spectrograph, ProtoDESI monitored the output of the fibers using a Fiber Photometry Camera mounted on the prime focus instrument. ProtoDESI was successful in acquiring targets with the robotically positioned fibers and demonstrated that the DESI guiding requirements can be met.Comment: Accepted versio

    Oral particle uptake and organ targeting drives the activity of amphotericin B nanoparticles

    Get PDF
    There are very few drug delivery systems that target key organs via the oral route, as oral delivery advances normally address gastrointestinal drug dissolution, permeation, and stability. Here we introduce a nanomedicine in which nanoparticles, while also protecting the drug from gastric degradation, are taken up by the gastrointestinal epithelia and transported to the lung, liver, and spleen, thus selectively enhancing drug bioavailability in these target organs and diminishing kidney exposure (relevant to nephrotoxic drugs). Our work demonstrates, for the first time, that oral particle uptake and translocation to specific organs may be used to achieve a beneficial therapeutic response. We have illustrated this using amphotericin B, a nephrotoxic drug encapsulated within <i>N</i>-palmitoyl-<i>N</i>-methyl-<i>N</i>,<i>N</i>-dimethyl-<i>N</i>,<i>N</i>,<i>N</i>-trimethyl-6-<i>O</i>-glycol chitosan (GCPQ) nanoparticles, and have evidenced our approach in three separate disease states (visceral leishmaniasis, candidiasis, and aspergillosis) using industry standard models of the disease in small animals. The oral bioavailability of AmB-GCPQ nanoparticles is 24%. In all disease models, AmB-GCPQ nanoparticles show comparable efficacy to parenteral liposomal AmB (AmBisome). Our work thus paves the way for others to use nanoparticles to achieve a specific targeted delivery of drug to key organs via the oral route. This is especially important for drugs with a narrow therapeutic index

    The Robotic Multiobject Focal Plane System of the Dark Energy Spectroscopic Instrument (DESI)

    Get PDF
    A system of 5020 robotic fiber positioners was installed in 2019 on the Mayall Telescope, at Kitt Peak National Observatory. The robots automatically retarget their optical fibers every 10-20 minutes, each to a precision of several microns, with a reconfiguration time of fewer than 2 minutes. Over the next 5 yr, they will enable the newly constructed Dark Energy Spectroscopic Instrument (DESI) to measure the spectra of 35 million galaxies and quasars. DESI will produce the largest 3D map of the universe to date and measure the expansion history of the cosmos. In addition to the 5020 robotic positioners and optical fibers, DESI’s Focal Plane System includes six guide cameras, four wave front cameras, 123 fiducial point sources, and a metrology camera mounted at the primary mirror. The system also includes associated structural, thermal, and electrical systems. In all, it contains over 675,000 individual parts. We discuss the design, construction, quality control, and integration of all these components. We include a summary of the key requirements, the review and acceptance process, on-sky validations of requirements, and lessons learned for future multiobject, fiber-fed spectrographs

    Data_Sheet_1_The Aha! experience is associated with a drop in the perceived difficulty of the problem.docx

    No full text
    The study investigated the correlation between the intensity of the Aha! experience and participants’ subjective difficulty ratings of problems before and after finding their solutions. We assumed that the Aha! experience arises from a shift in processing fluency triggered by changing from an initially incoherent problem representation to a coherent one, which ultimately leads to the retrieval of a solution with unexpected ease and speed. First, we hypothesized that higher Aha! experience ratings would indicate more sudden solutions, manifesting in a reduced correlation between the initial difficulty ratings and solution times. Second, we hypothesized that higher Aha! experience ratings would correspond to a greater shift in the subjective difficulty ratings between the initial and retrospective assessments. To test our hypotheses, we developed a novel set of rebus puzzles. A total of 160 participants solved rebuses and provided initial (within 5 s of problem presentation) and retrospective difficulty ratings (following the generation or presentation of a correct solution). They also rated their Aha! experience (after solution generation or presentation), confidence in solutions, and the likability of each rebus. Our findings revealed that the initial ratings of the problem’s subjective difficulty were positively correlated with the solution time and that this correlation decreased in the case of a stronger Aha! experience. Aha! experience ratings were positively correlated with the differences between initial and retrospective difficulty ratings, confidence, solution accuracy, and rebus likability. We interpreted our results to be in line with the processing fluency and metacognitive prediction error accounts.</p
    corecore