187 research outputs found

    Intraoperative Defibrillation Testing of Subcutaneous Implantable Cardioverter‐Defibrillator Systems—A Simple Issue?

    Full text link
    Background: The results of the recently published randomized SIMPLE trial question the role of routine intraoperative defibrillation testing. However, testing is still recommended during implantation of the entirely subcutaneous implantable cardioverter‐defibrillator (S‐ICD) system. To address the question of whether defibrillation testing in S‐ICD systems is still necessary, we analyzed the data of a large, standard‐of‐care prospective single‐center S‐ICD registry. // Methods and Results: In the present study, 102 consecutive patients received an S‐ICD for primary (n=50) or secondary prevention (n=52). Defibrillation testing was performed in all except 4 patients. In 74 (75%; 95% CI 0.66–0.83) of 98 patients, ventricular fibrillation was effectively terminated by the first programmed internal shock. In 24 (25%; 95% CI 0.22–0.44) of 98 patients, the first internal shock was ineffective and further internal or external shock deliveries were required. In these patients, programming to reversed shock polarity (n=14) or repositioning of the sensing lead (n=1) or the pulse generator (n=5) led to successful defibrillation. In 4 patients, a safety margin of <10 J was not attained. Nevertheless, in these 4 patients, ventricular arrhythmias were effectively terminated with an internal 80‐J shock. // Conclusions: Although it has been shown that defibrillation testing is not necessary in transvenous ICD systems, it seems particular important for S‐ICD systems, because in nearly 25% of the cases the primary intraoperative test was not successful. In most cases, a successful defibrillation could be achieved by changing shock polarity or by optimizing the shock vector caused by the pulse generator or lead repositioning.<br

    Divergent electrophysiologic action of dapagliflozin and empagliflozin on ventricular and atrial tachyarrhythmias in isolated rabbit hearts

    Get PDF
    BackgroundThe use of SGLT-2 inhibitors has revolutionized heart failure therapy. Evidence suggests a reduced incidence of ventricular and atrial arrhythmias in patients with dapagliflozin or empagliflozin treatment. It is unclear to what extent the reduced arrhythmia burden is due to direct effects of the SGLT2 inhibitors or is solely a marker of improved cardiac function.MethodsOne hundred five rabbit hearts were allocated to eight groups and retrogradely perfused, employing a Langendorff setup. Action potential duration at 90% of repolarization (APD90), QT intervals, effective refractory periods, conduction velocity, and dispersion of repolarization were obtained with monophasic action potential catheters. A model for tachyarrhythmias was established with the IKr blocker erythromycin for QT prolongation associated proarrhythmia as well as the potassium channel opener pinacidil for a short-QT model. An atrial fibrillation (AF) model was created with isoproterenol and acetylcholine. With increasing concentrations of both SGLT2 inhibitors, reductions in QT intervals and APD90 were observed, accompanied by a slight increase in ventricular arrhythmia episodes. During drug-induced proarrhythmia, empagliflozin succeeded in decreasing QT intervals, APD90, and VT burden whereas dapagliflozin demonstrated no significant effects. In the presence of pinacidil induced arrhythmogenicity, neither SGLT2 inhibitor had a significant impact on cardiac electrophysiology. In the AF setting, perfusion with dapagliflozin showed significant suppression of AF in the course of restitution of electrophysiological parameters whereas empagliflozin showed no significant effect on atrial fibrillation incidence.ConclusionIn this model, empagliflozin and dapagliflozin demonstrated opposite antiarrhythmic properties. Empagliflozin reduced ventricular tachyarrhythmias whereas dapagliflozin showed effective suppression of atrial arrhythmias

    Distinct Occurrence of Proarrhythmic Afterdepolarizations in Atrial Versus Ventricular Cardiomyocytes: Implications for Translational Research on Atrial Arrhythmia

    Get PDF
    Background: Principal mechanisms of arrhythmia have been derived from ventricular but not atrial cardiomyocytes of animal models despite higher prevalence of atrial arrhythmia (e.g., atrial fibrillation). Due to significant ultrastructural and functional differences, a simple transfer of ventricular proneness toward arrhythmia to atrial arrhythmia is critical. The use of murine models in arrhythmia research is widespread, despite known translational limitations. We here directly compare atrial and ventricular mechanisms of arrhythmia to identify critical differences that should be considered in murine models for development of antiarrhythmic strategies for atrial arrhythmia.Methods and Results: Isolated murine atrial and ventricular myocytes were analyzed by wide field microscopy and subjected to a proarrhythmic protocol during patch-clamp experiments. As expected, the spindle shaped atrial myocytes showed decreased cell area and membrane capacitance compared to the rectangular shaped ventricular myocytes. Though delayed afterdepolarizations (DADs) could be evoked in a similar fraction of both cell types (80% of cells each), these led significantly more often to the occurrence of spontaneous action potentials (sAPs) in ventricular myocytes. Interestingly, numerous early afterdepolarizations (EADs) were observed in the majority of ventricular myocytes, but there was no EAD in any atrial myocyte (EADs per cell; atrial myocytes: 0 ± 0; n = 25/12 animals; ventricular myocytes: 1.5 [0–43]; n = 20/12 animals; p &lt; 0.05). At the same time, the action potential duration to 90% decay (APD90) was unaltered and the APD50 even increased in atrial versus ventricular myocytes. However, the depolarizing L-type Ca2+ current (ICa) and Na+/Ca2+-exchanger inward current (INCX) were significantly smaller in atrial versus ventricular myocytes.Conclusion: In mice, atrial myocytes exhibit a substantially distinct occurrence of proarrhythmic afterdepolarizations compared to ventricular myocytes, since they are in a similar manner susceptible to DADs but interestingly seem to be protected against EADs and show less sAPs. Key factors in the generation of EADs like ICa and INCX were significantly reduced in atrial versus ventricular myocytes, which may offer a mechanistic explanation for the observed protection against EADs. These findings may be of relevance for current studies on atrial level in murine models to develop targeted strategies for the treatment of atrial arrhythmia

    Safety of pulsed field ablation in more than 17,000 patients with atrial fibrillation in the MANIFEST-17K study

    Get PDF
    Pulsed field ablation (PFA) is an emerging technology for the treatment of atrial fibrillation (AF), for which pre-clinical and early-stage clinical data are suggestive of some degree of preferentiality to myocardial tissue ablation without damage to adjacent structures. Here in the MANIFEST-17K study we assessed the safety of PFA by studying the post-approval use of this treatment modality. Of the 116 centers performing post-approval PFA with a pentaspline catheter, data were received from 106 centers (91.4% participation) regarding 17,642 patients undergoing PFA (mean age 64, 34.7% female, 57.8% paroxysmal AF and 35.2% persistent AF). No esophageal complications, pulmonary vein stenosis or persistent phrenic palsy was reported (transient palsy was reported in 0.06% of patients; 11 of 17,642). Major complications, reported for ~1% of patients (173 of 17,642), were pericardial tamponade (0.36%; 63 of 17,642) and vascular events (0.30%; 53 of 17,642). Stroke was rare (0.12%; 22 of 17,642) and death was even rarer (0.03%; 5 of 17,642). Unexpected complications of PFA were coronary arterial spasm in 0.14% of patients (25 of 17,642) and hemolysis-related acute renal failure necessitating hemodialysis in 0.03% of patients (5 of 17,642). Taken together, these data indicate that PFA demonstrates a favorable safety profile by avoiding much of the collateral damage seen with conventional thermal ablation. PFA has the potential to be transformative for the management of patients with AF.Peer reviewe

    Drug-induced proarrhythmia: risk factors and electrophysiological mechanisms

    Full text link

    ESC-Leitlinie 2022: Management ventrikulärer Arrhythmien in der klinischen Praxis

    Full text link
    Was ist neu? Neuerungen in der Diagnostik bei ventrikulären Arrhythmien Die Leitlinie legt einen besonderen Schwerpunkt auf praxisnahe Empfehlungen und beinhaltet u.a. übersichtliche Algorithmen. Es werden zahlreiche neue Empfehlungen zur kardialen MRT und genetischen Testung ausgesprochen. Langzeitmanagement ventrikulärer Arrhythmien Grundpfeiler des Langzeitmanagements bleibt die optimale Behandlung der Grunderkrankung. Die Leitlinie enthält Algorithmen zur antiarrhythmischen Pharmakotherapie und konkrete ICD-Programmierempfehlungen. Idiopathische ventrikuläre Arrhythmien Die Empfehlungen beziehen neben der Symptomatik auch die VES-Last mit ein. Die Katheterablation wird Erstlinientherapie bei idiopathischen ventrikulären Arrhythmien aus dem rechtsventrikulären Ausflusstrakt und linken Faszikel sowie bei VES-aggravierter oder -induzierter Kardiomyopathie. Koronare Herzerkrankung Die aktuellen Empfehlungen zur primärprophylaktischen ICD-Therapie beziehen die programmierte elektrische Stimulation zur Risikostratifizierung ein. Die Ergebnisse der VANISH-Studie modifizieren die Empfehlungen zur Katheterablation bei rezidivierenden VT. Dilatative Kardiomyopathie Neben der linksventrikulären Funktion werden in den Empfehlungen zur primärprophylaktischen ICD-Therapie auch bildmorphologische, genetische und klinische Faktoren berücksichtigt. Primär elektrische Erkrankungen Für eine Vielzahl primär elektrischer Erkrankungen werden dezidierte Diagnosekriterien formuliert. Neu sind zahlreiche Empfehlungen zur genetischen Diagnostik.</jats:p

    Reply to letter to the editor by Gulmira Kudaibedieva and Bulent Gorenek

    Full text link

    Calcium handling and ventricular tachyarrhythmias

    Full text link
    corecore