35 research outputs found

    Crucial role of zebrafish prox1 in hypothalamic catecholaminergic neurons development

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>Prox1</it>, the vertebrate homolog of <it>prospero </it>in <it>Drosophila melanogaster</it>, is a divergent homeogene that regulates cell proliferation, fate determination and differentiation during vertebrate embryonic development.</p> <p>Results</p> <p>Here we report that, in zebrafish, <it>prox1 </it>is widely expressed in several districts of the Central Nervous System (CNS). Specifically, we evidenced <it>prox1 </it>expression in a group of neurons, already positive for <it>otp1</it>, located in the hypothalamus at the level of the posterior tuberculum (PT). Prox1 knock-down determines the severe loss of hypothalamic catecholaminergic (CA) neurons, identified by tyrosine hydroxylase (TH) expression, and the synergistic <it>prox1/otp1 </it>overexpression induces the appearance of hypothalamic supernumerary TH-positive neurons and ectopic TH-positive cells on the yolk epitelium.</p> <p>Conclusion</p> <p>Our findings indicate that <it>prox1 </it>activity is crucial for the proper development of the <it>otp1</it>-positive hypothalamic neuronal precursors to their terminal CA phenotype.</p

    Modeling Lung Carcinoids with Zebrafish Tumor Xenograft

    Get PDF
    Lung carcinoids are neuroendocrine tumors that comprise well-differentiated typical (TCs) and atypical carcinoids (ACs). Preclinical models are indispensable for cancer drug screening since current therapies for advanced carcinoids are not curative. We aimed to develop a novel in vivo model of lung carcinoids based on the xenograft of lung TC (NCI-H835, UMC-11, and NCI-H727) and AC (NCI-H720) cell lines and patient-derived cell cultures in Tg(fli1a:EGFP)(y1) zebrafish embryos. We exploited this platform to test the anti-tumor activity of sulfatinib. The tumorigenic potential of TC and AC implanted cells was evaluated by the quantification of tumor-induced angiogenesis and tumor cell migration as early as 24 h post-injection (hpi). The characterization of tumor-induced angiogenesis was performed in vivo and in real time, coupling the tumor xenograft with selective plane illumination microscopy on implanted zebrafish embryos. TC-implanted cells displayed a higher pro-angiogenic potential compared to AC cells, which inversely showed a relevant migratory behavior within 48 hpi. Sulfatinib inhibited tumor-induced angiogenesis, without affecting tumor cell spread in both TC and AC implanted embryos. In conclusion, zebrafish embryos implanted with TC and AC cells faithfully recapitulate the tumor behavior of human lung carcinoids and appear to be a promising platform for drug screening

    Cabozantinib in neuroendocrine tumours: tackling drug activity and resistance mechanisms

    Get PDF
    Neuroendocrine tumors (NETs) are highly vascularized malignancies in which angiogenesis may entail cell proliferation and survival. Among the emerging compounds with antivascular properties, cabozantinib (CAB) appeared promising. We analyzed the antitumor activity of CAB against NETs utilizing in vitro and in vivo models. For cell cultures, we used BON-1, NCI-H727 and NCI-H720 cell lines. Cell viability was assessed by manual count coupled with quantification of cell death, performed through fluorescence-activated cell sorting analysis as propidium iodide exclusion assay. In addition, we investigated the modulation of the antiapoptotic myeloid cell leukemia 1 protein under CAB exposure, as a putative adaptive pro-survival mechanism, and compared the responses with sunitinib. The activity of CAB was also tested in mouse and zebrafish xenograft tumor models. Cabozantinib showed a dose-dependent and time-dependent effect on cell viability and proliferation in human NET cultures, besides a halting of cell cycle progression for endoduplication, never reported for other tyrosine kinase inhibitors. In a transplantable zebrafish model, CAB drastically inhibited NET-induced angiogenesis and migration of implanted cells through the embryo body. CAB showed encouraging activity in NETs, both in vitro and in vivo models. On this basis, we envisage future research to further investigate along these promising lines

    Novel Mechanisms of Tumor Promotion by the Insulin Receptor Isoform A in Triple-Negative Breast Cancer Cells

    Get PDF
    The insulin receptor isoform A (IR-A) plays an increasingly recognized role in fetal growth and tumor biology in response to circulating insulin and/or locally produced IGF2. This role seems not to be shared by the IR isoform B (IR-B). We aimed to dissect the specific impact of IR isoforms in modulating insulin signaling in triple negative breast cancer (TNBC) cells. We generated murine 4T1 TNBC cells deleted from the endogenous insulin receptor (INSR) gene and expressing comparable levels of either human IR-A or IR-B. We then measured IR isoform-specific in vitro and in vivo biological effects and transcriptome in response to insulin. Overall, the IR-A was more potent than the IR-B in mediating cell migration, invasion, and in vivo tumor growth. Transcriptome analysis showed that approximately 89% of insulin-stimulated transcripts depended solely on the expression of the specific isoform. Notably, in cells overexpressing IR-A, insulin strongly induced genes involved in tumor progression and immune evasion including chemokines and genes related to innate immunity. Conversely, in IR-B overexpressing cells, insulin predominantly induced the expression of genes primarily involved in the regulation of metabolic pathways and, to a lesser extent, tumor growth and angiogenesis

    Zebrafish as an innovative model for neuroendocrine tumors

    No full text
    Tumor models have a relevant role in furthering our understanding of the biology of malignant disease and in preclinical cancer research. Only few models are available for neuroendocrine tumors (NETs), probably due to the rarity and heterogeneity of this group of neoplasms. This review provides insights into the current state-of-the-art of zebrafish as a model in cancer research, focusing on potential applications in NETs. Zebrafish has a complex circulatory system similar to that of mammals. A novel angiogenesis assay based on the injection of human NET cell lines (TT and DMS79 cells) into the subperidermal space of the zebrafish embryos has been developed. Proangiogenic factors locally released by the tumor graft affect the normal developmental pattern of the subintestinal vessels by stimulating the migration and growth of sprouting vessels toward the implant. In addition, a description of the striking homology between zebrafish and humans of molecular targets involved in tumor angiogenesis (somatostatin receptors, dopamine receptors, mammalian target of rapamycin), and currently used as targeted therapy of NETs, is reported

    MANAGEMENT OF ENDOCRINE DISEASE: Precision medicine in neuroendocrine neoplasms: an update on current management and future perspectives

    Get PDF
    Neuroendocrine neoplasms (NENs) are traditionally considered as a single group of rare malignancies that originate from the highly spread neuroendocrine system. The clinical management is complex due to the high heterogeneity of these neoplasms in terms of clinical aggressiveness and response to the therapy. Indeed, a multidisciplinary approach is required to reach a personalization of the therapy, including cancer rehabilitation. In this review, we discuss the possibility to adopt a precision medicine (PM) approach in the management of NENs. To this purpose, we summarize current knowledge and future perspectives about biomarkers and preclinical in vitro and in vivo platforms, potentially useful to inform clinicians about the prognosis and for tailoring therapy in patients with NENs. This approach may represent a breakthrough in the therapy and tertiary prevention of these tumors

    Animal models of medullary thyroid cancer: state of the art and view to the future

    Get PDF
    Medullary thyroid carcinoma is a neuroendocrine tumour originating from parafollicular C cells accounting for 5-10% of thyroid cancers. Increased understanding of disease-specific molecular targets of therapy has led to the regulatory approval of two drugs (vandetanib and cabozantinib) for the treatment of medullary thyroid carcinoma. These drugs increase progression-free survival; however, they are often poorly tolerated and most treatment responses are transient. Animal models are indispensable tools for investigating the pathogenesis, mechanisms for tumour invasion and metastasis and new therapeutic approaches for cancer. Unfortunately, only few models are available for medullary thyroid carcinoma. This review provides an overview of the state of the art of animal models in medullary thyroid carcinoma and highlights future developments in this field, with the aim of addressing salient features and clinical relevance

    Crucial role of zebrafish in hypothalamic catecholaminergic neurons development-1

    No full text
    ), dorsal view. Eyes or lens have been removed for better lateral viewing. () WISH combined with TH immunohistochemistry. Anti-TH antibody labels the PT and hypothalamic CA neurons at 36 hpf. Colabelling with is evident in a fraction of TH-positive neuroblasts in the hypothalamus (arrowheads), as also confirmed by the longitudinal section of the embryo (). microinjection of MO lowers the number of TH-labelled CA neurons in the hypothalamus in comparison to standard control injected embryos . coinjection of mRNA and MO rescued the morphant phenotype. () Quantitative real time RT-PCR. TH-specific mRNA is almost five-fold decreased following MO injection. The result represents at least three independent experiments, and 18S was used as an internal control. The following abbreviations are used: posterior tuberculum (PT), pituitary (Pit), hypothalamus (Hy), standard control morpholino oligonucleotide (stdr MO). Scale bars indicate 10 μm or 20 μm .<p><b>Copyright information:</b></p><p>Taken from "Crucial role of zebrafish in hypothalamic catecholaminergic neurons development"</p><p>http://www.biomedcentral.com/1471-213X/8/27</p><p>BMC Developmental Biology 2008;8():27-27.</p><p>Published online 10 Mar 2008</p><p>PMCID:PMC2288594.</p><p></p

    The cAMP analogs have potent anti-proliferative effects on medullary thyroid cancer cell lines

    No full text
    The oncogenic activation of the rearranged during transfection (RET) proto-oncogene has a main role in the pathogenesis of medullary thyroid cancer (MTC). Several lines of evidence suggest that RET function could be influenced by cyclic AMP (cAMP)-dependent protein kinase A (PKA) activity. We evaluated the in vitro anti-tumor activity of 8-chloroadenosine-3′,5′-cyclic monophosphate (8-Cl-cAMP) and PKA type I-selective cAMP analogs [equimolar combination of the 8-piperidinoadenosine-3′,5′-cyclic monophosphate (8-PIP-cAMP) and 8-hexylaminoadenosine-3′,5′-cyclic monophosphate (8-HA-cAMP) in MTC cell lines (TT and MZ-CRC-1)]. 8-Cl-cAMP and the PKA I-selective cAMP analogs showed a potent anti-proliferative effect in both cell lines. In detail, 8-Cl-cAMP blocked significantly the transition of TT cell population from G2/M to G0/G1 phase and from G0/G1 to S phase and of MZ-CRC-1 cells from G0/G1 to S phase. Moreover, 8-Cl-cAMP induced apoptosis in both cell lines, as demonstrated by FACS analysis for annexin V-FITC/propidium iodide, the activation of caspase-3 and PARP cleavage. On the other hand, the only effect induced by PKA I-selective cAMP analogs was a delay in G0/G1-S and S-G2/M progression in TT and MZ-CRC-1 cells, respectively. In conclusion, these data demonstrate that cAMP analogs, particularly 8-Cl-cAMP, significantly suppress in vitro MTC proliferation and provide rationale for a potential clinical use of cAMP analogs in the treatment of advanced MTC
    corecore