1,111 research outputs found

    On the Onset of Inflation in Loop Quantum Cosmology

    Get PDF
    Using a Liouville measure, similar to the one proposed recently by Gibbons and Turok, we investigate the probability that single-field inflation with a polynomial potential can last long enough to solve the shortcomings of the standard hot big bang model, within the semiclassical regime of loop quantum cosmology. We conclude that, for such a class of inflationary models and for natural values of the loop quantum cosmology parameters, a successful inflationary scenario is highly improbable.Comment: 16 pages, 6 figures Amended version to appear in Phys. Rev.

    A New Class of Four-Dimensional N=1 Supergravity with Non-minimal Derivative Couplings

    Full text link
    In the N=1 four-dimensional new-minimal supergravity framework, we supersymmetrise the coupling of the scalar kinetic term to the Einstein tensor. This coupling, although introduces a non-minimal derivative interaction of curvature to matter, it does not introduce harmful higher-derivatives. For this construction, we employ off-shell chiral and real linear multiplets. Physical scalars are accommodated in the chiral multiplet whereas curvature resides in a linear one.Comment: 18 pages, version published at JHE

    Physics of Trans-Planckian Gravity

    Full text link
    We study the field theoretical description of a generic theory of gravity flowing to Einstein General Relativity in IR. We prove that, if ghost-free, in the weakly coupled regime such a theory can never become weaker than General Relativity. Using this fact, as a byproduct, we suggest that in a ghost-free theory of gravity trans-Planckian propagating quantum degrees of freedom cannot exist. The only physical meaning of a trans-Planckian pole is the one of a classical state (Black Hole) which is described by the light IR quantum degrees of freedom and gives exponentially-suppressed contributions to virtual processes. In this picture Einstein gravity is UV self-complete, although not Wilsonian, and sub-Planckian distances are unobservable in any healthy theory of gravity. We then finally show that this UV/IR correspondence puts a severe constraint on any attempt of conventional Wilsonian UV-completion of trans-Planckian gravity. Specifically, there is no well-defined energy domain in which gravity could become asymptotically weak or safe.Comment: 23 pages, 4 figures, v2: Paper reorganized to improve clarity; additional explanations and references added; version accepted for publication in Phys. Rev.

    Climatic impact of the A.D. 1783 Asama (Japan) Eruption was minimal: Evidence from the GISP2 Ice Core

    Get PDF
    Assessing the climatic impact of the A.D. 1783 eruption of Mt. Asama, Japan, is complicated by the concurrent eruption of Laki, Iceland. Estimates of the stratospheric loading of H2SO4 for the A.D. 1108 eruption of Asama derived from the SO42− time series in the GISP2 Greenland ice core indicate a loading of about 10.4 Tg H2SO4 with a resulting stratospheric optical depth of 0.087. Assuming sulfur emissions from the 1783 eruption were only one‐third of the 1108 event yields a H2SO4 loading value of 3.5 Tg and a stratospheric optical depth of only 0.029. These results suggest minimal climatic effects in the Northern Hemisphere from the 1783 Asama eruption, thus any volcanically‐induced cooling in the mid‐1780s is probably due to the Laki eruption

    Remarks on the Scalar Graviton Decoupling and Consistency of Horava Gravity

    Full text link
    Recently Horava proposed a renormalizable gravity theory with higher derivatives by abandoning the Lorenz invariance in UV. But there have been confusions regarding the extra scalar graviton mode and the consistency of the Horava model. I reconsider these problems and show that, in the Minkowski vacuum background, the scalar graviton mode can be consistency decoupled from the usual tensor graviton modes by imposing the (local) Hamiltonian as well as the momentum constraints.Comment: Some clarifications regarding the projectable case added, Typos corrected, Comments (Footnote No.9, Note Added) added, References updated, Accepted in CQ

    Two-dimensional Quantum Black Holes, Branes in BTZ and Holography

    Get PDF
    We solve semiclassical Einstein equations in two dimensions with a massive source and we find a static, thermodynamically stable, quantum black hole solution in the Hartle-Hawking vacuum state. We then study the black hole geometry generated by a boundary mass sitting on a non-zero tension 1-brane embedded in a three-dimensional BTZ black hole. We show that the two geometries coincide and we extract, using holographic relations, information about the CFT living on the 1-brane. Finally, we show that the quantum black hole has the same temperature of the bulk BTZ, as expected from the holographic principle.Comment: 10 pages, 2 figures, RevTex, ``point particle of mass \mu '' changed with ``massive boundary source'' for better clarity. Action in (50) written in Z_2 symmetric form. Appendix clarified. Minor corrections and references added. Version accepted for pubblication in PRD15 (2006

    Caracterização do amido de grão-de-bico (Cicer arietinum L.).

    Get PDF
    O objetivo deste trabalho foi extrair e caracterizar o amido de grĂŁo-de-bico quanto a sua composição quĂ­mica, estrutural e morfolĂłgica, propriedades tĂ©rmicas e tecnolĂłgicas. O rendimento apresentado no processo de extração foi de 28%, com alta pureza. A observação em microscopia eletrĂŽnica de varredura mostrou grĂąnulos de amido com formato cilĂ­ndrico e oval, com dimensĂ”es de 20 ”m de comprimento e 10 ”m de largura. O padrĂŁo de cristalinidade mostrado por difratometria de raios X foi do tipo C, tĂ­pico de leguminosas. A anĂĄlise das propriedades de pasta foi efetuada por calorimetria diferencial de varredura (DSC) e analisador rĂĄpido de viscosidade (RVA). Em DSC, foi encontrada a temperatura inicial de gelatinização de 65,51°C, a final de 86,90°C e a entalpia de gelatinização de 12,12 J/g. O RVA mostrou temperatura inicial de gelatinização de 73,1°C, valores elevados de viscosidade, baixa quebra e alta tendĂȘncia Ă  retrogradação. O amido apresentou pouco inchamento e solubilidade, mesmo na temperatura de 90°C. O gel de amido de grĂŁo-de-bico mostrou-se turvo e com alta sinĂ©rese e apresentou elevada dureza e elasticidade em anĂĄlise de perfil de textura

    Gravitational collapse and evolution of holographic black holes

    Full text link
    Gravitational collapse is analyzed in the Brane-World by arguing that regularity of five-dimensional geodesics require that stars on the brane have an atmosphere. For the simple case of a spherically symmetric cloud of non-dissipating dust, conditions are found for which the collapsing star evaporates and approaches the Hawking behavior as the (apparent) horizon is being formed. The effective energy of the star vanishes at a finite radius and the star afterwards re-expands and "anti-evaporates". Israel junction conditions across the brane (holographically related to the matter trace anomaly) and the projection of the Weyl tensor on the brane (holographically interpreted as the quantum back-reaction on the brane metric) contribute to the total energy as, respectively, an "anti-evaporation" and an "evaporation" term.Comment: 6 pages; Talk given at QG05, Cala Gonone (Italy), September 200

    Stellar models with Schwarzschild and non-Schwarzschild vacuum exteriors

    Full text link
    A striking characteristic of non-Schwarzschild vacuum exteriors is that they contain not only the total gravitational mass of the source, but also an {\it arbitrary} constant. In this work, we show that the constants appearing in the "temporal Schwarzschild", "spatial Schwarzschild" and "Reissner-Nordstr{\"o}m-like" exteriors are not arbitrary but are completely determined by star's parameters, like the equation of state and the gravitational potential. Consequently, in the braneworld scenario the gravitational field outside of a star is no longer determined by the total mass alone, but also depends on the details of the internal structure of the source. We show that the general relativistic upper bound on the gravitational potential M/R<4/9M/R < 4/9, for perfect fluid stars, is significantly increased in these exteriors. Namely, M/R<1/2M/R < 1/2, M/R<2/3M/R < 2/3 and M/R<1M/R < 1 for the temporal Schwarzschild, spatial Schwarzschild and Reissner-Nordstr{\"o}m-like exteriors, respectively. Regarding the surface gravitational redshift, we find that the general relativistic Schwarzschild exterior as well as the braneworld spatial Schwarzschild exterior lead to the same upper bound, viz., Z<2Z < 2. However, when the external spacetime is the temporal Schwarzschild metric or the Reissner-Nordstr{\"o}m-like exterior there is no such constraint: Z<∞Z < \infty. This infinite difference in the limiting value of ZZ is because for these exteriors the effective pressure at the surface is negative. The results of our work are potentially observable and can be used to test the theory.Comment: 19 pages, 3 figures and caption
    • 

    corecore