17 research outputs found

    Double collinear splitting amplitudes at next-to-leading order

    Get PDF
    We compute the next-to-leading order (NLO) QCD corrections to the 1 -> 2 splitting amplitudes in different dimensional regularization (DREG) schemes. Besides recovering previously known results, we explore new DREG schemes and analyze their consistency by comparing the divergent structure with the expected behavior predicted by Catani's formula. Through the introduction of scalar-gluons, we show the relation among splittings matrices computed using different schemes. Also, we extended this analysis to cover the double collinear limit of scattering amplitudes in the context of QCD+QED

    Hadron plus photon production in polarized hadronic collisions at next-to-leading order accuracy

    Get PDF
    We compute the next-to-leading order QCD corrections to the polarized (and unpolarized) cross sections for the production of a hadron accompanied by an opposite-side prompt photon. This process, being studied at RHIC, permits us to reconstruct partonic kinematics using experimentally measurable variables. We study the correlation between the reconstructed momentum fractions and the true partonic ones, which in the polarized case might allow us to reveal the spin-dependent gluon distribution with a higher precision.Comment: 18 figures included. New version, discussion about polarized asymmetries extended, 7 new figures, new reference

    From five-loop scattering amplitudes to open trees with the Loop-Tree Duality

    Full text link
    Characterizing multiloop topologies is an important step towards developing novel methods at high perturbative orders in quantum field theory. In this article, we exploit the Loop-Tree Duality (LTD) formalism to analyse multiloop topologies that appear for the first time at five loops. Explicitly, we open the loops into connected trees and group them according to their topological properties. Then, we identify a kernel generator, the so-called N7^7MLT universal topology, that allow us to describe any scattering amplitude of up to five loops. Furthermore, we provide factorization and recursion relations that enable us to write these multiloop topologies in terms of simpler subtopologies, including several subsets of Feynman diagrams with an arbitrary number of loops. Our approach takes advantage of many symmetries present in the graphical description of the original fundamental five-loop topologies. The results obtained in this article might shed light into a more efficient determination of higher-order corrections to the running couplings, which are crucial in the current and future precision physics program.Comment: 14 pages, 6 figures, 2 table

    Polarized triple-collinear splitting functions at NLO for processes with photons

    Get PDF
    We compute the polarized splitting functions in the triple collinear limit at next-to-leading order accuracy (NLO) in the strong coupling alpha(S), for the splitting processes gamma -> qq gamma, gamma -> qqg and g -> qq gamma. The divergent structure of each splitting function was compared to the predicted behaviour according to Catani's formula. The results obtained in this paper are compatible with the unpolarized splitting functions computed in a previous article. Explicit results for NLO corrections are presented in the context of conventional dimensional regularization (CDR)

    Variational quantum eigensolver for causal loop Feynman diagrams and acyclic directed graphs

    Full text link
    We present a variational quantum eigensolver (VQE) algorithm for the efficient bootstrapping of the causal representation of multiloop Feynman diagrams in the Loop-Tree Duality (LTD) or, equivalently, the selection of acyclic configurations in directed graphs. A loop Hamiltonian based on the adjacency matrix describing a multiloop topology, and whose different energy levels correspond to the number of cycles, is minimized by VQE to identify the causal or acyclic configurations. The algorithm has been adapted to select multiple degenerated minima and thus achieves higher detection rates. A performance comparison with a Grover's based algorithm is discussed in detail. The VQE approach requires, in general, fewer qubits and shorter circuits for its implementation, albeit with lesser success rates.Comment: 32 pages, 7 figures. Improved discussion and success rates of multi-run VQ

    Triple collinear splitting functions at NLO for scattering processes with photons

    Get PDF
    We present splitting functions in the triple collinear limit at next-to-leading order. The computation was performed in the context of massless QCD+QED, considering only processes which include at least one photon. Through the comparison of the IR divergent structure of splitting amplitudes with the expected known behavior, we were able to check our results. Besides that we implemented some consistency checks based on symmetry arguments and cross-checked the results among them. Studying photon-started processes, we obtained very compact results

    Triple-collinear splittings with massive particles

    No full text
    Abstract We analyze in detail the most singular behaviour of processes involving triple-collinear splittings with massive particles in the quasi-collinear limit, and present compact expressions for the splitting amplitudes and the corresponding splitting kernels at the squared-amplitude level. Our expressions fully agree with well-known triple-collinear splittings in the massless limit, which are used as a guide to achieve the final expressions. These results are important to quantify dominant mass effects in many observables, and constitute an essential ingredient of current high-precision computational frameworks for collider phenomenology
    corecore