5,672 research outputs found

    The airborne lava-seawater interaction plume at Kilauea Volcano, Hawaii

    Get PDF
    Petrology igneous metamorphic and volcanic studies; medm0

    Bubble wall perturbations coupled with gravitational waves

    Get PDF
    We study a coupled system of gravitational waves and a domain wall which is the boundary of a vacuum bubble in de Sitter spacetime. To treat the system, we use the metric junction formalism of Israel. We show that the dynamical degree of the bubble wall is lost and the bubble wall can oscillate only while the gravitational waves go across it. It means that the gravitational backreaction on the motion of the bubble wall can not be ignored.Comment: 23 pages with 3 eps figure

    Quantum Mechanical Carrier of the Imprints of Gravitation

    Get PDF
    We exhibit a purely quantum mechanical carrier of the imprints of gravitation by identifying for a relativistic system a property which (i) is independent of its mass and (ii) expresses the Poincare invariance of spacetime in the absence of gravitation. This carrier consists of the phase and amplitude correlations of waves in oppositely accelerating frames. These correlations are expressed as a Klein-Gordon-equation-determined vector field whose components are the ``Planckian power'' and the ``r.m.s. thermal fluctuation'' spectra. The imprints themselves are deviations away from this vector field.Comment: 8 pages, RevTex. Html version of this and related papers on accelerated frames available at http://www.math.ohio-state.edu/~gerlac

    Probing the local dynamics of periodic orbits by the generalized alignment index (GALI) method

    Full text link
    As originally formulated, the Generalized Alignment Index (GALI) method of chaos detection has so far been applied to distinguish quasiperiodic from chaotic motion in conservative nonlinear dynamical systems. In this paper we extend its realm of applicability by using it to investigate the local dynamics of periodic orbits. We show theoretically and verify numerically that for stable periodic orbits the GALIs tend to zero following particular power laws for Hamiltonian flows, while they fluctuate around non-zero values for symplectic maps. By comparison, the GALIs of unstable periodic orbits tend exponentially to zero, both for flows and maps. We also apply the GALIs for investigating the dynamics in the neighborhood of periodic orbits, and show that for chaotic solutions influenced by the homoclinic tangle of unstable periodic orbits, the GALIs can exhibit a remarkable oscillatory behavior during which their amplitudes change by many orders of magnitude. Finally, we use the GALI method to elucidate further the connection between the dynamics of Hamiltonian flows and symplectic maps. In particular, we show that, using for the computation of GALIs the components of deviation vectors orthogonal to the direction of motion, the indices of stable periodic orbits behave for flows as they do for maps.Comment: 17 pages, 9 figures (accepted for publication in Int. J. of Bifurcation and Chaos

    The generalization of the Regge-Wheeler equation for self-gravitating matter fields

    Full text link
    It is shown that the dynamical evolution of perturbations on a static spacetime is governed by a standard pulsation equation for the extrinsic curvature tensor. The centerpiece of the pulsation equation is a wave operator whose spatial part is manifestly self-adjoint. In contrast to metric formulations, the curvature-based approach to gravitational perturbation theory generalizes in a natural way to self-gravitating matter fields. For a certain relevant subspace of perturbations the pulsation operator is symmetric with respect to a positive inner product and therefore allows spectral theory to be applied. In particular, this is the case for odd-parity perturbations of spherically symmetric background configurations. As an example, the pulsation equations for self-gravitating, non-Abelian gauge fields are explicitly shown to be symmetric in the gravitational, the Yang Mills, and the off-diagonal sector.Comment: 4 pages, revtex, no figure

    Self-consistent approach for the quantum confined Stark effect in shallow quantum wells

    Full text link
    A computationally efficient, self-consistent complex scaling approach to calculating characteristics of excitons in an external electric field in quantum wells is introduced. The method allows one to extract the resonance position as well as the field-induced broadening for the exciton resonance. For the case of strong confinement the trial function is represented in factorized form. The corresponding coupled self-consistent equations, which include the effective complex potentials, are obtained. The method is applied to the shallow quantum well. It is shown that in this case the real part of the effective exciton potential is insensitive to changes of external electric field up to the ionization threshold, while the imaginary part has non-analytical field dependence and small for moderate electric fields. This allows one to express the exciton quasi-energy at some field through the renormalized expression for the zero-field bound state.Comment: 13 pages, RevTeX4, 6 figure

    Numerical integration of variational equations

    Full text link
    We present and compare different numerical schemes for the integration of the variational equations of autonomous Hamiltonian systems whose kinetic energy is quadratic in the generalized momenta and whose potential is a function of the generalized positions. We apply these techniques to Hamiltonian systems of various degrees of freedom, and investigate their efficiency in accurately reproducing well-known properties of chaos indicators like the Lyapunov Characteristic Exponents (LCEs) and the Generalized Alignment Indices (GALIs). We find that the best numerical performance is exhibited by the \textit{`tangent map (TM) method'}, a scheme based on symplectic integration techniques which proves to be optimal in speed and accuracy. According to this method, a symplectic integrator is used to approximate the solution of the Hamilton's equations of motion by the repeated action of a symplectic map SS, while the corresponding tangent map TSTS, is used for the integration of the variational equations. A simple and systematic technique to construct TSTS is also presented.Comment: 27 pages, 11 figures, to appear in Phys. Rev.
    • …
    corecore