1,489 research outputs found

    Advanced thermoplastic resins, phase 1

    Get PDF
    Eight thermoplastic polyimide resin systems were evaluated as composite matrix materials. Two resins were selected for more extensive mechanical testing and both were versions of LaRC-TPI (Langley Research Center - Thermoplastic Polyimide). One resin was made with LaRC-TPI and contained 2 weight percent of a di(amic acid) dopant as a melt flow aid. The second system was a 1:1 slurry of semicrystalline LaRC-TPI powder in a polyimidesulfone resin diglyme solution. The LaRC-TPI powder melts during processing and increases the melt flow of the resin. Testing included dynamic mechanical analysis, tension and compression testing, and compression-after-impact testing. The test results demonstrated that the LaRC-TPI resins have very good properties compared to other thermoplastics, and that they are promising matrix materials for advanced composite structures

    Coulomb-U and magnetic moment collapse in δ\delta-Pu

    Full text link
    The around-the-mean-field version of the LDA+U method is applied to investigate electron correlation effects in δ\delta-Pu. It yields a non-magnetic ground state of δ−\delta-Pu, and provides a good agreement with experimental equilibrium volume, bulk modulus and explains important features of the photoelectron spectra

    Reversal of the ΔdegP Phenotypes by a Novel rpoE Allele of Escherichia coli

    Get PDF
    RseA sequesters RpoE (σE) to the inner membrane of Escherichia coli when envelope stress is low. Elevated envelope stress triggers RseA cleavage by the sequential action of two membrane proteases, DegS and RseP, releasing σE to activate an envelope stress reducing pathway. Revertants of a ΔdegP ΔbamB strain, which fails to grow at 37°C due to high envelope stress, harbored mutations in the rseA and rpoE genes. Null and missense rseA mutations constitutively hyper-activated the σE regulon and significantly reduced the major outer membrane protein (OMP) levels. In contrast, a novel rpoE allele, rpoE3, resulting from the partial duplication of the rpoE gene, increased σE levels greater than that seen in the rseA mutant background but did not reduce OMP levels. A σE-dependent RybB::LacZ construct showed only a weak activation of the σE pathway by rpoE3. Despite this, rpoE3 fully reversed the growth and envelope vesiculation phenotypes of ΔdegP. Interestingly, rpoE3 also brought down the modestly activated Cpx envelope stress pathway in the ΔdegP strain to the wild type level, showing the complementary nature of the σE and Cpx pathways. Through employing a labile mutant periplasmic protein, AcrAL222Q, it was determined that the rpoE3 mutation overcomes the ΔdegP phenotypes, in part, by activating a σE-dependent proteolytic pathway. Our data suggest that a reduction in the OMP levels is not intrinsic to the σE-mediated mechanism of lowering envelope stress. They also suggest that under extreme envelope stress, a tight homeostasis loop between RseA and σE may partly be responsible for cell death, and this loop can be broken by mutations that either lower RseA activity or increase σE levels

    Efficacy and safety of sorafenib in patients with advanced hepatocellular carcinoma: subanalyses of a phase III trial

    Get PDF
    Background & AimsThe Sorafenib Hepatocellular Carcinoma (HCC) Assessment Randomized Protocol (SHARP) trial demonstrated that sorafenib improves overall survival and is safe for patients with advanced HCC. In this trial, 602 patients with well-preserved liver function (>95% Child–Pugh A) were randomized to receive either sorafenib 400mg or matching placebo orally b.i.d. on a continuous basis. Because HCC is a heterogeneous disease, baseline patient characteristics may affect individual responses to treatment. In a comprehensive series of exploratory subgroup analyses, data from the SHARP trial were analyzed to discern if baseline patient characteristics influenced the efficacy and safety of sorafenib.MethodsFive subgroup domains were assessed: disease etiology, tumor burden, performance status, tumor stage, and prior therapy. Overall survival (OS), time to progression (TTP), disease control rate (DCR), and safety were assessed for subgroups within each domain.ResultsSubgroup analyses showed that sorafenib consistently improved median OS compared with placebo, as reflected by hazard ratios (HRs) of 0.50–0.85, similar to the complete cohort (HR=0.69). Sorafenib also consistently improved median TTP (HR, 0.40–0.64), except in HBV-positive patients (HR, 1.03), and DCR. Results are limited by small patient numbers in some subsets. The most common grade 3/4 adverse events included diarrhea, hand-foot skin reaction, and fatigue; the incidence of which did not differ appreciably among subgroups.ConclusionsThese exploratory subgroup analyses showed that sorafenib consistently improved median OS and DCR compared with placebo in patients with advanced HCC, irrespective of disease etiology, baseline tumor burden, performance status, tumor stage, and prior therapy

    Protein Aggregation on Metal Oxides Governs Catalytic Activity and Cellular Uptake.

    Get PDF
    Engineering of catalytically active inorganic nanomaterials holds promising prospects for biomedicine. Catalytically active metal oxides show applications in enhancing wound healing but have also been employed to induce cell death in photodynamic or radiation therapy. Upon introduction into a biological system, nanomaterials are exposed to complex fluids, causing interaction and adsorption of ions and proteins. While protein corona formation on nanomaterials is acknowledged, its modulation of nanomaterial catalytic efficacy is less understood. In this study, proteomic analyses and nano-analytic methodologies quantify and characterize adsorbed proteins, correlating this protein layer with metal oxide catalytic activity in vitro and in vivo. The protein corona comprises up to 280 different proteins, constituting up to 38% by weight. Enhanced complement factors and other opsonins on nanocatalyst surfaces lead to their uptake into macrophages when applied topically, localizing >99% of the nanomaterials in tissue-resident macrophages. Initially, the formation of the protein corona significantly reduces the nanocatalysts' activity, but this activity can be partially recovered in endosomal conditions due to the proteolytic degradation of the corona. Overall, the research reveals the complex relationship between physisorbed proteins and the catalytic characteristics of specific metal oxide nanoparticles, providing design parameters for optimizing nanocatalysts in complex biological environments
    • …
    corecore