84 research outputs found

    Involvement of regional lymph nodes after penetration of Schistosoma mansoni cercariae in naive and infected mice

    Full text link
    The parotid lymph nodes of naive and previously infected Balb/c mice were studied after, respectively, infection and re-infection with cercariae of Schistosoma mansoni via the ears. Schistosomula were able to pass through the lymph node by following the lymph flow or by penetrating the veins of the medullary cords. The number of nodal mast cells was higher from day 2 to 6 of primary infection; and from day 5 to 11 of re-infection. The amount of degranulating mast cells was significantly higher at day 4 of infection and at day 1 of re-infection. Eosinophils characterized the nodal inflammatory processes observed after day 5 in both primarily-infected and re-infected mice. However, only in the latter the eosinophils were able to adhere to the larval surface. In primarily-infected mice, no intranodal larva presented signs of degeneration. In contrast, in re-infected animals, some degenerating larvae were found inside eosinophilic infiltrates. The eosinophils reached the nodal tissue by migrating through the high endothelial venules and their collecting veins

    Novel AlkB Dioxygenases—Alternative Models for In Silico and In Vivo Studies

    Get PDF
    Background: ALKBH proteins, the homologs of Escherichia coli AlkB dioxygenase, constitute a direct, single-protein repair system, protecting cellular DNA and RNA against the cytotoxic and mutagenic activity of alkylating agents, chemicals significantly contributing to tumor formation and used in cancer therapy. In silico analysis and in vivo studies have shown the existence of AlkB homologs in almost all organisms. Nine AlkB homologs (ALKBH1–8 and FTO) have been identified in humans. High ALKBH levels have been found to encourage tumor development, questioning the use of alkylating agents in chemotherapy. The aim of this work was to assign biological significance to multiple AlkB homologs by characterizing their activity in the repair of nucleic acids in prokaryotes and their subcellular localization in eukaryotes. Methodology and Findings: Bioinformatic analysis of protein sequence databases identified 1943 AlkB sequences with eight new AlkB subfamilies. Since Cyanobacteria and Arabidopsis thaliana contain multiple AlkB homologs, they were selected as model organisms for in vivo research. Using E. coli alkB2 mutant and plasmids expressing cyanobacterial AlkBs, we studied the repair of methyl methanesulfonate (MMS) and chloroacetaldehyde (CAA) induced lesions in ssDNA, ssRNA, and genomic DNA. On the basis of GFP fusions, we investigated the subcellular localization of ALKBHs in A. thaliana and established its mostly nucleo-cytoplasmic distribution. Some of the ALKBH proteins were found to change their localization upon MMS treatment. Conclusions: Our in vivo studies showed highly specific activity of cyanobacterial AlkB proteins towards lesions and nucleic acid type. Subcellular localization and translocation of ALKBHs in A. thaliana indicates a possible role for these proteins in the repair of alkyl lesions. We hypothesize that the multiplicity of ALKBHs is due to their involvement in the metabolism of nucleo-protein complexes; we find their repair by ALKBH proteins to be economical and effective alternative to degradation and de novo synthesis

    The Genetics of Obesity

    Get PDF
    Obesity is a result of excess body fat accumulation. This excess is associated with adverse health effects such as CVD, type 2 diabetes, and cancer. The development of obesity has an evident environmental contribution, but as shown by heritability estimates of 40% to 70%, a genetic susceptibility component is also needed. Progress in understanding the etiology has been slow, with findings largely restricted to monogenic, severe forms of obesity. However, technological and analytical advances have enabled detection of more than 20 obesity susceptibility loci. These contain genes suggested to be involved in the regulation of food intake through action in the central nervous system as well as in adipocyte function. These results provide plausible biological pathways that may, in the future, be targeted as part of treatment or prevention strategies. Although the proportion of heritability explained by these genes is small, their detection heralds a new phase in understanding the etiology of common obesity

    Association Analysis of the FTO Gene with Obesity in Children of Caucasian and African Ancestry Reveals a Common Tagging SNP

    Get PDF
    Recently an association was demonstrated between the single nucleotide polymorphism (SNP), rs9939609, within the FTO locus and obesity as a consequence of a genome wide association (GWA) study of type 2 diabetes in adults. We examined the effects of two perfect surrogates for this SNP plus 11 other SNPs at this locus with respect to our childhood obesity cohort, consisting of both Caucasians and African Americans (AA). Utilizing data from our ongoing GWA study in our cohort of 418 Caucasian obese children (BMI≥95th percentile), 2,270 Caucasian controls (BMI<95th percentile), 578 AA obese children and 1,424 AA controls, we investigated the association of the previously reported variation at the FTO locus with the childhood form of this disease in both ethnicities. The minor allele frequencies (MAF) of rs8050136 and rs3751812 (perfect surrogates for rs9939609 i.e. both r2 = 1) in the Caucasian cases were 0.448 and 0.443 respectively while they were 0.391 and 0.386 in Caucasian controls respectively, yielding for both an odds ratio (OR) of 1.27 (95% CI 1.08–1.47; P = 0.0022). Furthermore, the MAFs of rs8050136 and rs3751812 in the AA cases were 0.449 and 0.115 respectively while they were 0.436 and 0.090 in AA controls respectively, yielding an OR of 1.05 (95% CI 0.91–1.21; P = 0.49) and of 1.31 (95% CI 1.050–1.643; P = 0.017) respectively. Investigating all 13 SNPs present on the Illumina HumanHap550 BeadChip in this region of linkage disequilibrium, rs3751812 was the only SNP conferring significant risk in AA. We have therefore replicated and refined the association in an AA cohort and distilled a tag-SNP, rs3751812, which captures the ancestral origin of the actual mutation. As such, variants in the FTO gene confer a similar magnitude of risk of obesity to children as to their adult counterparts and appear to have a global impact

    Glycan labeling strategies and their use in identification and quantification

    Get PDF
    Most methods for the analysis of oligosaccharides from biological sources require a glycan derivatization step: glycans may be derivatized to introduce a chromophore or fluorophore, facilitating detection after chromatographic or electrophoretic separation. Derivatization can also be applied to link charged or hydrophobic groups at the reducing end to enhance glycan separation and mass-spectrometric detection. Moreover, derivatization steps such as permethylation aim at stabilizing sialic acid residues, enhancing mass-spectrometric sensitivity, and supporting detailed structural characterization by (tandem) mass spectrometry. Finally, many glycan labels serve as a linker for oligosaccharide attachment to surfaces or carrier proteins, thereby allowing interaction studies with carbohydrate-binding proteins. In this review, various aspects of glycan labeling, separation, and detection strategies are discussed

    From monogenic to polygenic obesity: recent advances

    Get PDF
    The heritability of obesity and body weight in general is high. A small number of confirmed monogenic forms of obesity—the respective mutations are sufficient by themselves to cause the condition in food abundant societies—have been identified by molecular genetic studies. The elucidation of these genes, mostly based on animal and family studies, has led to the identification of important pathways to the disorder and thus to a deeper understanding of the regulation of body weight. The identification of inborn deficiency of the mostly adipocyte-derived satiety hormone leptin in extremely obese children from consanguineous families paved the way to the first pharmacological therapy for obesity based on a molecular genetic finding. The genetic predisposition to obesity for most individuals, however, has a polygenic basis. A polygenic variant by itself has a small effect on the phenotype; only in combination with other predisposing variants does a sizeable phenotypic effect arise. Common variants in the first intron of the ‘fat mass and obesity associated’ gene (FTO) result in an elevated body mass index (BMI) equivalent to approximately +0.4 kg/m² per risk allele. The FTO variants were originally detected in a genome wide association study (GWAS) pertaining to type 2 diabetes mellitus. Large meta-analyses of GWAS have subsequently identified additional polygenic variants. Up to December 2009, polygenic variants have been confirmed in a total of 17 independent genomic regions. Further study of genetic effects on human body weight regulation should detect variants that will explain a larger proportion of the heritability. The development of new strategies for diagnosis, treatment and prevention of obesity can be anticipated

    Comprehensive Pan-Genomic Characterization of Adrenocortical Carcinoma

    Get PDF
    SummaryWe describe a comprehensive genomic characterization of adrenocortical carcinoma (ACC). Using this dataset, we expand the catalogue of known ACC driver genes to include PRKAR1A, RPL22, TERF2, CCNE1, and NF1. Genome wide DNA copy-number analysis revealed frequent occurrence of massive DNA loss followed by whole-genome doubling (WGD), which was associated with aggressive clinical course, suggesting WGD is a hallmark of disease progression. Corroborating this hypothesis were increased TERT expression, decreased telomere length, and activation of cell-cycle programs. Integrated subtype analysis identified three ACC subtypes with distinct clinical outcome and molecular alterations which could be captured by a 68-CpG probe DNA-methylation signature, proposing a strategy for clinical stratification of patients based on molecular markers

    Integrated genomic characterization of oesophageal carcinoma

    Get PDF
    Oesophageal cancers are prominent worldwide; however, there are few targeted therapies and survival rates for these cancers remain dismal. Here we performed a comprehensive molecular analysis of 164 carcinomas of the oesophagus derived from Western and Eastern populations. Beyond known histopathological and epidemiologic distinctions, molecular features differentiated oesophageal squamous cell carcinomas from oesophageal adenocarcinomas. Oesophageal squamous cell carcinomas resembled squamous carcinomas of other organs more than they did oesophageal adenocarcinomas. Our analyses identified three molecular subclasses of oesophageal squamous cell carcinomas, but none showed evidence for an aetiological role of human papillomavirus. Squamous cell carcinomas showed frequent genomic amplifications of CCND1 and SOX2 and/or TP63, whereas ERBB2, VEGFA and GATA4 and GATA6 were more commonly amplified in adenocarcinomas. Oesophageal adenocarcinomas strongly resembled the chromosomally unstable variant of gastric adenocarcinoma, suggesting that these cancers could be considered a single disease entity. However, some molecular features, including DNA hypermethylation, occurred disproportionally in oesophageal adenocarcinomas. These data provide a framework to facilitate more rational categorization of these tumours and a foundation for new therapies
    corecore