29 research outputs found

    Versailles project on advanced materials and standards (VAMAS) interlaboratory study on measuring the number concentration of colloidal gold nanoparticles

    Get PDF
    We describe the outcome of a large international interlaboratory study of the measurement of particle number concentration of colloidal nanoparticles, project 10 of the technical working area 34, "Nanoparticle Populations" of the Versailles Project on Advanced Materials and Standards (VAMAS). A total of 50 laboratories delivered results for the number concentration of 30 nm gold colloidal nanoparticles measured using particle tracking analysis (PTA), single particle inductively coupled plasma mass spectrometry (spICP-MS), ultraviolet-visible (UV-Vis) light spectroscopy, centrifugal liquid sedimentation (CLS) and small angle X-ray scattering (SAXS). The study provides quantitative data to evaluate the repeatability of these methods and their reproducibility in the measurement of number concentration of model nanoparticle systems following a common measurement protocol. We find that the population-averaging methods of SAXS, CLS and UV-Vis have high measurement repeatability and reproducibility, with between-labs variability of 2.6%, 11% and 1.4% respectively. However, results may be significantly biased for reasons including inaccurate material properties whose values are used to compute the number concentration. Particle-counting method results are less reproducibile than population-averaging methods, with measured between-labs variability of 68% and 46% for PTA and spICP-MS respectively. This study provides the stakeholder community with important comparative data to underpin measurement reproducibility and method validation for number concentration of nanoparticles

    Versailles project on advanced materials and standards (VAMAS) interlaboratory study on measuring the number concentration of colloidal gold nanoparticles

    Get PDF
    We describe the outcome of a large international interlaboratory study of the measurement of particle number concentration of colloidal nanoparticles, project 10 of the technical working area 34, "Nanoparticle Populations" of the Versailles Project on Advanced Materials and Standards (VAMAS). A total of 50 laboratories delivered results for the number concentration of 30 nm gold colloidal nanoparticles measured using particle tracking analysis (PTA), single particle inductively coupled plasma mass spectrometry (spICP-MS), ultraviolet-visible (UV-Vis) light spectroscopy, centrifugal liquid sedimentation (CLS) and small angle X-ray scattering (SAXS). The study provides quantitative data to evaluate the repeatability of these methods and their reproducibility in the measurement of number concentration of model nanoparticle systems following a common measurement protocol. We find that the population-averaging methods of SAXS, CLS and UV-Vis have high measurement repeatability and reproducibility, with between-labs variability of 2.6%, 11% and 1.4% respectively. However, results may be significantly biased for reasons including inaccurate material properties whose values are used to compute the number concentration. Particle-counting method results are less reproducibile than population-averaging methods, with measured between-labs variability of 68% and 46% for PTA and spICP-MS respectively. This study provides the stakeholder community with important comparative data to underpin measurement reproducibility and method validation for number concentration of nanoparticles

    Versailles project on advanced materials and standards (VAMAS) interlaboratory study on measuring the number concentration of colloidal gold nanoparticles

    Get PDF
    We describe the outcome of a large international interlaboratory study of the measurement of particle number concentration of colloidal nanoparticles, project 10 of the technical working area 34, "Nanoparticle Populations" of the Versailles Project on Advanced Materials and Standards (VAMAS). A total of 50 laboratories delivered results for the number concentration of 30 nm gold colloidal nanoparticles measured using particle tracking analysis (PTA), single particle inductively coupled plasma mass spectrometry (spICP-MS), ultraviolet-visible (UV-Vis) light spectroscopy, centrifugal liquid sedimentation (CLS) and small angle X-ray scattering (SAXS). The study provides quantitative data to evaluate the repeatability of these methods and their reproducibility in the measurement of number concentration of model nanoparticle systems following a common measurement protocol. We find that the population-averaging methods of SAXS, CLS and UV-Vis have high measurement repeatability and reproducibility, with between-labs variability of 2.6%, 11% and 1.4% respectively. However, results may be significantly biased for reasons including inaccurate material properties whose values are used to compute the number concentration. Particle-counting method results are less reproducibile than population-averaging methods, with measured between-labs variability of 68% and 46% for PTA and spICP-MS respectively. This study provides the stakeholder community with important comparative data to underpin measurement reproducibility and method validation for number concentration of nanoparticles

    Toward the Mode of Action of the Clinical Stage All- d -Enantiomeric Peptide RD2 on Aβ42 Aggregation

    No full text
    The aggregation of amyloid-β (Aβ) into oligomers and fibrillary structures is critical for the pathogenesis of Alzheimer’s disease (AD). Recently, research effort has been focused on developing novel agents that can preferentially suppress Aβ oligomer mediated toxicities, for example, by directly targeting these toxic assemblies. The compound RD2 has been developed and optimized for Aβ42 monomer binding and stabilization of the monomer in its native intrinsically disordered conformation. It has been demonstrated to improve and even reverse the cognitive and behavioral deficits in AD mouse models, while the detailed mechanism of action is not fully clarified. Here we focused on exploring the interaction between RD2 and Aβ42 monomers and its consequences for the fibrillation of Aβ42. RD2 binds to Aβ42 monomers with nanomolar affinities, according to microscale thermophoresis and surface plasmon resonance measurements. Complexes between RD2 and Aβ42 monomers are formed at 1:1 and other stoichiometries, as revealed by analytical ultracentrifugation. At substoichiometric levels, RD2 slows down the secondary structure conversion of Aβ42 and significantly delays the fibril formation. Our research provides experimental evidence in supporting that RD2 eliminates toxic Aβ assemblies by stabilizing Aβ monomers in their native intrinsically disordered conformation. The study further supports the promising application of RD2 in counteracting Aβ aggregation related pathologies

    A So-Far Overlooked Secondary Conformation State in the Binding Mode of SARS-CoV-2 Spike Protein to Human ACE2 and Its Conversion Rate Are Crucial for Estimating Infectivity Efficacy of the Underlying Virus Variant

    No full text
    Since its outbreak in 2019, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has spread with high transmission efficiency across the world, putting health care as well as economic systems under pressure. During the course of the pandemic, the originally identified SARS-CoV-2 variant has been multiple times replaced by various mutant versions, which showed enhanced fitness due to increased infection and transmission rates. In order to find an explanation for why SARS-CoV-2 and its emerging mutated versions showed enhanced transmission efficiency compared with SARS-CoV (2002), an enhanced binding affinity of the spike protein to human angiotensin converting enzyme 2 (hACE2) has been proposed by crystal structure analysis and was identified in cell culture models. Kinetic analysis of the interaction of various spike protein constructs with hACE2 was considered to be best described by a Langmuir-based 1:1 stoichiometric interaction. However, we demonstrate in this report that the SARS-CoV-2 spike protein interaction with hACE2 is best described by a two-step interaction, which is defined by an initial binding event followed by a slower secondary rate transition that enhances the stability of the complex by a factor of ~190 (primary versus secondary state) with an overall equilibrium dissociation constant (KD) of 0.20 nM. In addition, we show that the secondary rate transition is not only present in SARS-CoV-2 wild type (“wt”; Wuhan strain) but also found in the B.1.1.7 variant, where its transition rate is 5-fold increased.IMPORTANCE The current SARS-CoV-2 pandemic is characterized by the high infectivity of SARS-CoV-2 and its derived variants of concern (VOCs). It has been widely assumed that the reason for its increased cell entry compared with SARS-CoV (2002) is due to alterations in the viral spike protein, where single amino acid residue substitutions can increase affinity for hACE2. So far, the interaction of a single unit of the CoV-2 spike protein has been described using the 1:1 Langmuir interaction kinetic. However, we demonstrate here that there is a secondary state binding step that may be essential for novel VOCs in order to further increase their infectivity. These findings are important for quantitatively understanding the infection process of SARS-CoV-2 and characterization of emerging SARS-CoV-2 variants of spike proteins. Thus, they provide a tool for predicting the potential infectivity of the respective viral variants based on secondary rate transition and secondary complex stability

    Histamine H3 receptor antagonists with peptidomimetic (keto)piperazine structures to inhibit Aβ oligomerisation

    No full text
    Alzheimeŕs disease (AD) is the most prominent neurodegenerative disorder with high medical need. Protein-protein-interactions (PPI) interactions have a critical role in AD where β-amyloid structures (Aβ) build toxic oligomers. Design of disease modifying multi target directed ligand (MTDL) has been performed, which disable PPI on the one hand and on the other hand, act as procognitive antagonists at the histamine H3 receptor (H3R). The synthetized compounds are structurally based on peptidomimetic amino acid-like structures mainly as keto, diketo-, or acyl variations of a piperazine moiety connected to an H3R pharmacophore. Most of them showed low nanomolar affinities at H3R and some with promising affinity to Aβ-monomers. The structure–activity relationships (SAR) described offer new possibilities for MTDL with an optimized profile combining symptomatic and potential causal therapeutic approaches in AD

    In Vitro and In Vivo Efficacies of the Linear and the Cyclic Version of an All-d-Enantiomeric Peptide Developed for the Treatment of Alzheimer’s Disease

    No full text
    Multiple sources of evidence suggest that soluble amyloid β (Aβ)-oligomers are responsible for the development and progression of Alzheimer’s disease (AD). In order to specifically eliminate these toxic Aβ-oligomers, our group has developed a variety of all-d-peptides over the past years. One of them, RD2, has been intensively studied and showed such convincing in vitro and in vivo properties that it is currently in clinical trials. In order to further optimize the compounds and to elucidate the characteristics of therapeutic d-peptides, several rational drug design approaches have been performed. Two of these d-peptides are the linear tandem (head-to-tail) d-peptide RD2D3 and its cyclized form cRD2D3. Tandemization and cyclization should result in an increased in vitro potency and increase pharmacokinetic properties, especially crossing the blood–brain-barrier. In comparison, cRD2D3 showed a superior pharmacokinetic profile to RD2D3. This fact suggests that higher efficacy can be achieved in vivo at equally administered concentrations. To prove this hypothesis, we first established the in vitro profile of both d-peptides here. Subsequently, we performed an intraperitoneal treatment study. This study failed to provide evidence that cRD2D3 is superior to RD2D3 in vivo as in some tests cRD2D3 failed to show equal or higher efficacy

    Myocarditis and Pericarditis After Vaccination for COVID-19.

    No full text
    This study investigates the incidence of myocarditis and pericarditis emergency department or inpatient hospital encounters before COVID-19 vaccine availability (January 2019–January 2021) and during a COVID-19 vaccination period (February-May 2021) in a large US health care system

    The Repurposed Drugs Suramin and Quinacrine Cooperatively Inhibit SARS-CoV-2 3CLpro In Vitro

    No full text
    Since the first report of a new pneumonia disease in December 2019 (Wuhan, China) the WHO reported more than 148 million confirmed cases and 3.1 million losses globally up to now. The causative agent of COVID-19 (SARS-CoV-2) has spread worldwide, resulting in a pandemic of unprecedented magnitude. To date, several clinically safe and efficient vaccines (e.g., Pfizer-BioNTech, Moderna, Johnson & Johnson, and AstraZeneca COVID-19 vaccines) as well as drugs for emergency use have been approved. However, increasing numbers of SARS-Cov-2 variants make it imminent to identify an alternative way to treat SARS-CoV-2 infections. A well-known strategy to identify molecules with inhibitory potential against SARS-CoV-2 proteins is repurposing clinically developed drugs, e.g., antiparasitic drugs. The results described in this study demonstrated the inhibitory potential of quinacrine and suramin against SARS-CoV-2 main protease (3CLpro). Quinacrine and suramin molecules presented a competitive and noncompetitive inhibition mode, respectively, with IC50 values in the low micromolar range. Surface plasmon resonance (SPR) experiments demonstrated that quinacrine and suramin alone possessed a moderate or weak affinity with SARS-CoV-2 3CLpro but suramin binding increased quinacrine interaction by around a factor of eight. Using docking and molecular dynamics simulations, we identified a possible binding mode and the amino acids involved in these interactions. Our results suggested that suramin, in combination with quinacrine, showed promising synergistic efficacy to inhibit SARS-CoV-2 3CLpro. We suppose that the identification of effective, synergistic drug combinations could lead to the design of better treatments for the COVID-19 disease and repurposable drug candidates offer fast therapeutic breakthroughs, mainly in a pandemic moment

    Discovery of all-D-peptide inhibitors of SARS CoV 2 3C-like protease

    No full text
    During the replication process of SARS-CoV-2 the main protease of the virus (3-chymotrypsin-like protease (3CLpro)) plays a pivotal role and is essential for the life cycle of the pathogen. Numerous studies have been conducted so far, which have confirmed 3CLpro as an attractive drug target to combat COVID-19. We describe a novel and efficient next generation sequencing (NGS) supported phage display selection strategy for the identification of a set of SARS-CoV-2 3CLpro targeting peptide ligands that inhibit the 3CL protease, in a competitive or non-competetive mode, in the low µM range. From the most efficient L-peptides obtained from the phage display, we designed all-D-peptides based on the retro-inverso (ri) principle. They had IC50 values also in the low µM range, and in combination even in the sub-micromolar range. The inhibition modes of these D-ri peptides were the same as their respective L-peptide versions. Our results demonstrate that retro-inverso obtained all-D-peptides interact with high-affinity and inhibit the SARS-CoV-2 3CL protease, thus reinforcing their potential as therapeutic agents. The here described D-ri peptides address limitations associated with current L-peptide inhibitors and are promising lead compounds. Further optimization regarding pharmacokinetic properties will allow the development of even more potent D-peptides to be used for the prevention and treatment of COVID-19
    corecore