18 research outputs found

    Vacuum-stimulated cooling of single atoms in three dimensions

    Full text link
    Taming quantum dynamical processes is the key to novel applications of quantum physics, e.g. in quantum information science. The control of light-matter interactions at the single-atom and single-photon level can be achieved in cavity quantum electrodynamics, in particular in the regime of strong coupling where atom and cavity form a single entity. In the optical domain, this requires permanent trapping and cooling of an atom in a micro-cavity. We have now realized three-dimensional cavity cooling and trapping for an orthogonal arrangement of cooling laser, trap laser and cavity vacuum. This leads to average single-atom trapping times exceeding 15 seconds, unprecedented for a strongly coupled atom under permanent observation.Comment: 4 pages, 4 figure

    The Leukemia-Specific Fusion Gene ETV6/RUNX1 Perturbs Distinct Key Biological Functions Primarily by Gene Repression

    Get PDF
    -positive leukemic cell lines.-positive ALL samples underline the relevance of these pathways and molecular functions. We also validated six differentially expressed genes representing the categories “stem cell properties”, “B-cell differentiation”, “immune response”, “cell adhesion” and “DNA damage” with RT-qPCR. fusion gene interferes with key regulatory functions that shape the biology of this leukemia subtype. E/R may thus indeed constitute the essential driving force for the propagation and maintenance of the leukemic process irrespective of potential consequences of associated secondary changes. Finally, these findings may also provide a valuable source of potentially attractive therapeutic targets

    Human recombinant activated protein C-coated stent for the prevention of restenosis in porcine coronary arteries

    Get PDF
    Activated protein C (APC), an endogenous protein, inhibits inflammation and thrombosis and interrupts the coagulation cascade. Here, we investigated the effect of human recombinant APC on the development of neointimal hyperplasia in porcine coronary arteries. Yukon Choice bare metal stents were coated with 2.6 mu g APC/mm(2). Under general anesthesia, APC-coated and bare stents were implanted in the left anterior descending and circumflex coronary arteries of 10 domestic pigs. During the 4-week follow-up, animals were treated with dual antiplatelet therapy and neointimal hyperplasia was evaluated via histology. Scanning electron microscopy indicated successful but unequal coating of stents with APC; nearly complete drug release occurred within 4 h. Enzyme-linked immunosorbent assay revealed that intracoronary stent implantation rapidly increased the levels of monocyte chemoattractant protein-1, an effect that was inhibited by APC release from the coated stent. Fibrin deposition and adventitial inflammation were significantly decreased 1 month after implanting APC-coated stents versus bare stents, paralleled by significantly smaller neointimal area (0.98 +/- 0.92 vs. 1.44 +/- 0.91 mm(2), P = 0.028), higher lumen area (3.47 +/- 0.94 vs. 3.06 +/- 0.91 mm(2), P = 0.046), and lower stenosis area (22.2 +/- 21.2 % vs. 32.1 +/- 20.1 %, P = 0.034). Endothelialization was complete with APC-coated but not bare (90 %) stents. P-selectin immunostaining revealed significantly fewer activated endothelial cells in the neointima in the APC group (4.6 +/- 1.9 vs. 11.6 +/- 4.1 %, P < 0.001). Thus, short exposure of coronary arteries to APC reduced inflammatory responses, neointimal proliferation, and in-stent restenosis, offering a promising therapy to improve clinical outcomes of coronary stenting. However, coating stents with APC for prolonged, controlled drug release remains technically challenging

    Species diversity, distribution patterns, and substrate specificity of <i>Strobilurus</i>

    No full text
    <p>The fungal genus <i>Strobilurus</i> belongs to Physalacriaceae and contains approximately 11 species worldwide. Species of this genus grow and reproduce on cones of various conifers, seed pods or fruits of <i>Magnolia</i> and <i>Liquidambar</i>, and branches and wood of conifers. Previous studies focused mainly on samples from Europe and North America. And no genus-specific phylogenetic analysis has been carried out to date. The monophyly, degree of species diversity and substrate specificity, and overall distribution patterns are addressed here using morphological and molecular evidence. The authors collected samples of <i>Strobilurus</i> from much of its known distribution ranges and carried out morphological observations and multilocus phylogenetic analyses using five molecular markers. The results show that <i>Strobilurus</i> is a monophyletic group but may exclude one species, <i>S. ohshimae</i>. A total of 13 species was identified, with two, <i>S. orientalis</i> and <i>S. pachycystidiatus</i>, described as new from China. Several species were shown to be specific to certain substrates, whereas a few less so. Biogeographic analyses indicated that historical exchanges of species between East Asia, Europe, and North America, later vicariance events, and substrate specificity have contributed jointly to diversification of <i>Strobilurus</i>.</p
    corecore