680 research outputs found

    Efficacy of Hypnosis on Dental Anxiety and Phobia: A Systematic Review and Meta-Analysis

    Get PDF
    Hypnosis is a commonly used therapy option in dentistry and medicine for fear and pain reduction. Nevertheless, it is viewed very critically, as there is still insufficient evidence for a treatment effect. Specific phobia of dental treatment and dental anxiety are prevalent conditions that can cause an oral health impairment. This paper critically reviews 19 clinical trials aimed at reducing dental anxiety and fear avoidance in adults, published in peer-reviewed journals between 1979 and 2021. The search identified 257 papers; 223 were selected after removing duplicates. A total of 188 articles were excluded after title and abstract evaluation; 35 full text articles were assessed for eligibility. Another 10 papers were discharged after full text evaluation, as these were case reports and questionnaires. Six papers were discharged due to the lack of a comparable scale to measure dental anxiety. The following treatment techniques were reviewed: various forms of cognitive-behavioral therapy (CBT), relaxation training, benzodiazepine premedication, self-hypnosis by audio therapy, hypnotherapy, hypnosis, and nitrous oxide sedation. CBT delivered in a variety of formats, including one-session treatment, showed the most evidence for the efficacy of reducing anxiety. A wide heterogeneity of methods allowed only the inclusion of five studies to the performed meta-analysis, showing contrasting results for the application of hypnosis. The main reason for this issue is the great variety in methods used, making a distinct assessment of hypnotic interventions difficult. However, the results of the systematic review are promising in that hypnosis can also be regarded as powerful and successful method for anxiety reduction, while there are also studies with a small or even slightly negative effect. Therefore, further research is needed. Within the limitations of the current study, a more consistent use of methods to examine anxiety for hypnosis research is recommended

    Towards continuous aqueous two-phase extraction (CATPE)

    Get PDF
    Aqueous Two-Phase Extraction (ATPE) in mixer-settlers offers a gentle and biocompatible environment to separate proteins from complex mixtures. We have developed an aqueous two-phase system with inexpensive and biocompatible PEG 1500 or 4000 and ammonium citrate. We have purified several dehydrogenases [1] to near homogeneity after forward extraction into a PEG-heavy top phase at pH \u3e 9 and back extraction into a bottom phase at pH 4-6; in selected cases, we were able to obtain pure protein in the bottom phase without forward extraction into the top phase. We have scaled up the PEG 1500/4000-ammonium citrate to a 5-10 L scale, with phase separation times of less than five minutes.[2] We currently extend the system to the separation of Qα virus-like particles. However, ATPE technology is characterized by complex phase separation and very limited number of separation stages not offering enough separation efficiency. These limitations can be overcome by the novel Tunable Aqueous Polymer Phase Impregnated Resins (TAPPIR) technology which immobilizes one phase out of a biphasic aqueous extraction system in porous material (Figure 1) [3]. By immobilizing these impregnated resins in columns continuous operation similar to Simulated Moving Bed systems become possible. TAPPIR provides high separation efficiency along with high capacity, avoids long phase separation times (especially for highly viscous polymer phases) and offers an answer to the non-ecological image of ATPE through immobilizing and re-using phase forming material. The application of the TAPPIR technology has been shown for the separation of lysozyme and myoglobin using a polyethylene glycol 4000/citrate aqueous two-phase system in batch experiments [4]. In addition, the influence on protein partitioning of the porous solids\u27 properties like solid material, particle and pore size has been investigated. It could be demonstrated that the same partitioning levels can be reached for the TAPPIR as for classical ATPE mixer/settler experiments and that the leaching of the immobilized phase is negligible [5]. The presentation will introduce the TAPPIR technology, describe the advantages over chromatography and present a process concept for continuous operation with zero waste

    Surgical smoke and ultrafine particles

    Get PDF
    © 2008 Brüske-Hohlfeld et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution Licens

    Generalized myoclonic epilepsy with photosensitivity in juvenile dogs caused by a defective DIRAS family GTPase 1

    Get PDF
    The clinical and electroencephalographic features of a canine generalized myoclonic epilepsy with photosensitivity and onset in young Rhodesian Ridgeback dogs (6 wk to 18 mo) are described. A fully penetrant recessive 4-bp deletion was identified in the DIRAS family GTPase 1 (DIRAS1) gene with an altered expression pattern of DIRAS1 protein in the affected brain. This neuronal DIRAS1 gene with a proposed role in cholinergic transmission provides not only a candidate for human myoclonic epilepsy but also insights into the disease etiology, while establishing a spontaneous model for future intervention studies and functional characterization

    Background-free fluorescence decay time sensing and imaging of pH with highly photostable diazaoxotriangulenium dyes

    Get PDF
    Novel fluorescent diazaoxatriangulenium (DAOTA) pH indicators for lifetime-based self-referenced pH sensing are reported. The DAOTA dyes were decorated with phenolic receptor groups inducing fluorescence quenching via photoinduced electron transfer mechanism. Electron-withdrawing chlorine substituents ensure response in the most relevant pH range (apparent pK'a values ~5 and 7.5 for the p,p-dichlorophenol- and the p-chlorophenol-substituted dyes, respectively). The dyes feature long fluorescence lifetime (17-20 ns), high quantum yield (~60%) and high photostability. Planar optodes are prepared upon immobilization of the dyes into polyurethane hydrogel D4. Apart from the response in the fluorescence intensity, the optodes show pH-dependent lifetime behaviour which makes them suitable for studying 2D pH distribution with help of fluorescence lifetime imaging technique. The lifetime response is particularly pronounced for the sensors with high dye concentration (0.5-1% wt. in respect to the polymer) and is attributed to efficient homo-FRET mechanism

    Dimeric chlorite dismutase from the nitrogen-fixing cyanobacterium Cyanothece sp. PCC7425

    Get PDF
    It is demonstrated that cyanobacteria (both azotrophic and non-azotrophic) may 34 contain heme b oxidoreductases that can convert chlorite to chloride and molecular oxygen (incorrectly denominated chlorite “dismutase”, Cld). Beside the water-splitting manganese complex of photosystem II this metalloenzyme is the second known enzyme that catalyzes the formation of a covalent oxygen-oxygen bond. All cyanobacterial Clds have a truncated N-terminus and are dimeric (i.e. clade 2) proteins. As model protein, Cld from Cyanothece sp. PCC7425 (CCld) was recombinantly produced in E. coli and shown to efficiently degrade chlorite with an activity optimum at pH 5 (kcat 1144 ± 23.8 s-1, KM 162 ± 10.0 μM, catalytic efficiency (7.1 ± 0.6) × 106 M-1 s-1). The resting ferric high-spin axially symmetric heme enzyme has a standard reduction potential of the Fe(III)/Fe(II) couple of -126 ± 1.9 mV at pH 7. Cyanide mediates the formation of a low-spin complex with kon = (1.6 ± 0.1) × 105 M-1 s-1 and koff = 1.4 ± 2.9 s-1 (KD ~ 8.6 μM). Both, thermal and chemical unfolding follows a non-two state unfolding pathway with the first transition being related to the release of the prosthetic group. The obtained data are discussed with respect to known structure-function relationships of Clds. We ask for the physiological substrate and putative function of these O2-producing proteins in (nitrogen-fixing) cyanobacteria
    corecore